期刊文献+

几乎相等的三次华林-哥德巴赫问题的例外集

Exceptional set for sums of almost equal prime cubes
原文传递
导出
摘要 本文证明了对5≤s≤8,几乎所有的满足某些同余条件的正整数N都可以表示为N=p31+···+p3s,|pi-(N/s)1/3|≤N1/3-θs,其中θ5=7261-2ε,θ6=5159-ε,θ7=11333-ε,θ8=19561-ε. We prove that almost all integers N satisfying some necessary congruence conditions can be written as sum of the form N = p31/31+ · · · + p3 swith |pi-(N/s)|≤N1/3-θs, where θs =7261- 2ε,5159- ε,11333- ε,19561- εfor s = 5, 6, 7, 8, respectively.
出处 《中国科学:数学》 CSCD 北大核心 2015年第1期23-30,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10971119和11301325) 教育部创新团队(批准号:IRT1264)资助项目
关键词 华林-哥德巴赫问题 例外集 圆法 小区间上的素变数三角和估计 exceptional set Waring-Goldbach problem circle method exponential sum over primes in short intervals
  • 相关文献

参考文献1

二级参考文献10

  • 1Hua L K. Some results in the additive prime number theory. Q J Math, 1938, 9(1): 68 -80.
  • 2Kumchev A V. On Weyl sums over primes in short intervals. In: "Arithmetic in Shangrila" Proceedings of the 6th China-Japan Seminar on Number Theory. Series on Number Theory and Its Applications, 9. Singapore: World Scientific, 2012, 116- 131.
  • 3Li T Y. Additive Problems with Prime Numbers. Ph D Thesis. Shandong University, 2012 (in Chinese).
  • 4Liu J Y. An iterative method in the Waring-Goldbach problem. Chebyshevskii Sb, 2005, 5:164- 179.
  • 5Lii G S. Sums of nine almost equal prime cubes. Aeta Math Sinica (Chin Ser), 2006, 49:195 204 (in Chinese).
  • 6Lii G S, Xu Y F. Hua's theorem with nine almost equal prime variables. Aeta Math Hungar, 2007, 116(4): 309- 326.
  • 7Meng X M. The Waring-Goldbach problems in short intervals. J Shandong Univ Nat Sci, 1997, 3:164 -225.
  • 8Meng X M. On sums of nine almost equal prime cubes. J Shandong Univ Nat Sci, 2002, 37:31- 37.
  • 9Vaughan R C. The Hardy-Littlewood Method. 2nd ed. Cambridge: Cambridge University Press, 1997.
  • 10Zhao L L. On the Waring-Goldbach problem for fourth and sixth powers. Proc Lond Math Soc, DOI: 10.1112/plms/pdt072.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部