期刊文献+

一类不连续平面二次微分系统的极限环 被引量:6

Limit cycles for a class of discontinuous planar quadratic differential system
原文传递
导出
摘要 本文考虑了一类不连续平面二次可积非Hamilton微分系统在二次扰动下的极限环个数问题.利用一阶平均法,我们得到了从该系统中心的周期环域至少可以分支出5个极限环的结论.该结果表明不连续二次微分系统比其相应光滑微分系统至少可以多分支出2个极限环. In this paper, we consider the number of limit cycles for a class of discontinuous planar quadratic integrable non-Hamiltonian system under quadratic perturbation. Using the first order averaging method, we obtain that there are at least 5 limit cycles which can bifurcate from the period annulus of the center for this system. Our result also shows that the discontinuous quadratic system can have at least 2 more limit cycles than the smooth one.
出处 《中国科学:数学》 CSCD 北大核心 2015年第1期43-52,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171355和11401111) 广东财经大学校级课题(批准号:13YB11001)资助项目
关键词 极限环 平均法 不连续微分系统 limit cycles averaging method discontinuous differential system
  • 相关文献

参考文献26

  • 1Banerjee S, Verghese d. Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control. New York: Wiley-IEEE Press, 2001.
  • 2Coll B, Gasull A, Prohens R. Center-focus and isochronous center problems for discontinuous differential equations. Discrete Contin Dyn Syst, 2000, 6:609-624.
  • 3Gasull A, Torregrosa J. Center-focus problems for discontinuous planar differential equations. Int J Bifurcat Chaos, 2003, 13:1755-1765.
  • 4Chen X, Zhang W. Isochronicity of centers in a switching Bautin system. J Differ Equations, 2012, 252:2877-2899.
  • 5Manosaa F, Torres P. Isochronicity of a class of piecewise continuous oscillators. Proc Amer Math Soc, 2005, 133: 3027-3035.
  • 6Han M, Yu P. Normal Forms, Melnikov Functions and Bifurcations of Limit cycles. NewYork: Springer, 2012.
  • 7Filippov A. Differential Equation with Discontinuous Right-Hand Sides. Amsterdam: Kluwer Academic Press, 1988.
  • 8Kukucka M. Non-Smooth Dynamical Systems. Berlin: Springer=Verlag, 2000.
  • 9Han M, Zhang W. On hopf bifurcations in nonsmooth planar systems. J Differ Equations, 2010, 248:2399 2416.
  • 10Huan S, Yang X. On the number of limit cycles in general planar piecewise linear systems. Discrete Contin Dyn Syst, 2012, 32:2147 2164.

同被引文献25

  • 1Xia Liu,Maoan Han.Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Int. J. Bifurcation Chaos Appl. Sci. Eng . 2010
  • 2Jaume Llibre,Jesús S. Pérez del Río,José Angel Rodríguez.Averaging analysis of a perturbated quadratic center. Nonlinear Analysis . 2001
  • 3Limit cycles of a perturbed cubic polynomial differential center(J)Chaos, Solitons and Fractals . 2005 (3)
  • 4Haiyan Yao,Maoan Han.??The number of limit cycles of a class of polynomial differential systems(J)Nonlinear Analysis . 2011 (1)
  • 5Feng Liang,Maoan Han.??Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems(J)Chaos, Solitons and Fractals . 2012 (4)
  • 6Jing Wang,Shuliang Shui,Luca Guerrini.??Poincaré Bifurcations of Two Classes of Polynomial Systems(J)<journal-title>Abstract and Applied Analysis . 2013
  • 7Yanqin Xiong.??Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters(J)Journal of Mathematical Analysis and Applications . 2015 (1)
  • 8GUANGHUI XIANG,MAOAN HAN.GLOBAL BIFURCATION OF LIMIT CYCLES IN A FAMILY OF MULTIPARAMETER SYSTEM. International Journal of Bifurcation and Chaos . 2004
  • 9J. Llibre,G. \’Swirszcz.On the limit cycles of polynomial vector fields. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal . 2011
  • 10Li J B. Hilberts 16th problem and bifurcations of planar polynomial vector fields [J]. Int J Bifur Chaos Appl Sci Eng,2003,13 ( 1 ) :47-106.

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部