期刊文献+

Viscosity Solutions to a Parabolic Inhomogeneous Equation Associated with Infinity Laplacian

Viscosity Solutions to a Parabolic Inhomogeneous Equation Associated with Infinity Laplacian
原文传递
导出
摘要 We obtain the existence and uniqueness results of viscosity solutions to the initial and boundary value problem for a nonlinear degenerate and singular parabolic inhomogeneous equation of the form ut-△ ∞N u=f, where An denotes the so-called normalized infinity Laplacian given by △∞ Nu=1/|Du|2〈D2uDu,Du〉. We obtain the existence and uniqueness results of viscosity solutions to the initial and boundary value problem for a nonlinear degenerate and singular parabolic inhomogeneous equation of the form ut-△ ∞N u=f, where An denotes the so-called normalized infinity Laplacian given by △∞ Nu=1/|Du|2〈D2uDu,Du〉.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第2期255-271,共17页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11071119 and 11171153)
关键词 Parabolic equation infinity Laplacian viscosity solution inhomogeneous equation comparison principle EXISTENCE Parabolic equation, infinity Laplacian, viscosity solution, inhomogeneous equation, comparison principle, existence
  • 相关文献

参考文献31

  • 1Akagi, G., Juutinen, P., Kajikiya, R.: Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian. Math. Ann., 343, 921-953 (2009).
  • 2Akagi, G., Suzuki, K.: On a certain degenerate parabolic equation associated with the infinity-Laplacian. Discrete Contin. Dyn. Syst., (supplement) 18-27 (2007).
  • 3Akagi, G., Suzuki, K.: Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian. Calc. Var. and Partial Differential Equations, 31, 457-471 (2008).
  • 4Armstrong, S. N., Smart, C. K.: A finite differnce approach to the infinity Laplace equation and the tug-of-war games. Trans. Amer. Math. Soc., 364(2), 595-636 (2012).
  • 5Armstrong, S. N., Smart, C. K., Somersille, S. J.: An infinity Laplace equation with gradient term and mixed boundary conditions. Proc. Amer. Math. Soc., 139(5), 1763-1776 (2011).
  • 6Aronsson, G.: Minimization problems for the functional sup x F(x, f(x), f'(x)). Ark. Mat., 6,33-53 (1965).
  • 7Aronsson, G.: Minimization problems for the functional sUPx F(x, f(x), f'(x)), II. Ark. Mat., 6,409-431 (1966).
  • 8Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat., 6, 551-561 (1967).
  • 9Aronsson, G., Crandall, M., Juutinen, P.: A tour of the theory of absolute minimizing functions. Bull. Amer. Math. Soc., 41, 439-505 (2004).
  • 10Bhataacharya, T., Mohammed, A.: Inhomogeneous Dirichlet problems involving the infinity-Laplacian. Adv. Diff. Eq., 17, 225-266 (2012).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部