期刊文献+

单形中Weitzenbck不等式和Sallee-Alexander不等式的稳定性

The stability of Weitzenbck inequality and Sallee-Alexander inequality for a simplex
下载PDF
导出
摘要 对于n(n≥2)维Euclidean空间中n维单形的几何不等式,其径向函数或支撑函数很难找到,一般很难用径向或Hausdorff来度量2个单形的"偏差",使得对有关单形的几何不等式稳定性的研究比较困难.利用n维单形与其共超球的n维正则单形的偏差,引进了单形"R-偏正"度量的概念,证明了Gerber不等式、Euler不等式、SalleeAlexander不等式以及Weitzenbck不等式是稳定的,并给出这些几何不等式的稳定性版本. It is very difficult to find the formula of radial function or support function of the simplex in n-dimensional Euclidean space En (n≥2). Therefore, the deviation metric of the two simplices is difficult to be realized by radial metric or Hausdorff metric. The research on stability of geometric inequalities of simplices is also difficult. In this paper,by using the deviation of an n-simplex and a regular n-simplex which are on an (n-1)-dimensional hyper sphere, the r-deviation regular metric are introduced. Futher, by applying the R-deviation regular metric, we proved that Gerber inequality, Euler inequality, Sallee-Alexander inequality and Weitzenbock inequality with an n-simplex are all stable, and gave the stability versions to these geometric inequalities for a simplex.
作者 王文 杨世国
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2015年第1期82-86,共5页 Journal of Zhejiang University(Science Edition)
基金 高等学校博士点专项科研基金项目(20113401110009) 安徽省高校省级重点项目(KJ2013A220)
关键词 单形 外接球半径 Weitzenbock不等式 Sallee-Alexander不等式 宽度 稳定性 simplex circum-radius Weitzenbock inequality Sallee-Alexander inequality width stability.
  • 相关文献

参考文献19

  • 1MINKOWSKI H. Volume und oberfldche[J]. Math Ann, 1903,57 : 447-495.
  • 2BONNESEN T. Probl lmes Des Isop Aim De Piphanes [M]. Paris:Gauthier-Villars, 1929.
  • 3GOODEY P R, GROEMER H. Stability results for first order projection bodies[J]. Poc Amer Math Soc, 1990,109 : 1103-1114.
  • 4GARDNER R J, VASSALLO S. Stability inequalities in the dual Brun-Minkowski theory[J]. J Math Anal and Appi,1999,231:568 587.
  • 5GROEMER H. Stability properties of geometric inequali- ties[J]. Amer Math Maonthly, 1990, 97:382-394.
  • 6GROEMER H. Stability theorems for projections of convex sets[J]. Israel of Math Monthly, 1987, 60 : 81- 86.
  • 7GROEMER H, SCHNEIDER R. Stability estimates for some geometric inequalitiesrJ. Bull London Math Soc, 1991, 23:67-74.
  • 8GROEMER H. Stability properties of geometric ine- qualities[J]. American Mathematical Monthly, 1990, 9715,: 382-394.
  • 9马统一.Veljan-Korchmaros型不等式的稳定性[J].数学年刊(A辑),2008,29(3):399-412. 被引量:17
  • 10FEJES T L. Extremum properities of regular polyto- pes[J]. Acta Math Acad Sci Hunger, 1955 (6): 143- 146.

二级参考文献62

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部