期刊文献+

窄深槽磨削温度场三维有限元仿真与实验研究 被引量:4

Three Dimensional Finite Element Simulation and Experimental Study of Temperature for Grinding Narrow-and-Deep Slop
下载PDF
导出
摘要 在窄深槽磨削温度预测问题的研究中,针对工件宽度窄于磨削接触区理论长度的工况下磨削温度预测和工艺参数选择的问题,考虑了材料物理性能随温度非线性变化的关系,采用ANSYS生死单元技术对窄深槽磨削时的瞬态温度场进行了三维有限元仿真分析,研究了不同磨削工况下磨削区和已加工表面的温度变化。进行了磨削试验,将仿真结果与试验结果进行对比,并结合仿真温度分析了亚表面损伤情况。仿真结果表明,得到的结果和试验结果有较好的一致性,且工件进给速度越大,结果越接近试验值,仿真很好地阐释了温度场的热传递情况。根据仿真温度,结合温度变化导致的亚表面硬度值变化,可进行工件热损伤程度的预测。 The grinding temperature prediction and grinding process parameters of narrow-and-deep slop grinding is studied in the conditions where workpiece width is narrower than the theoretical length of the contact zone of the grinding. The non-linear relationship between the physical properties of the workpiece and the temperature is considered, a three-dimensional finite element transient nonlinear simulation for different grinding conditions is carried out by using unit life and death technique of ANSYS to investigate the temperature changes in the contact zone and the finish surface. Grinding tests are carried out, the simulation results are compared with experimental results, combined with the sub-surface simulation temperature, and the thermal damage is analyzed. The results show that there is a good agreement between the FE results and experimental results, and the faster the workpiece feed is, the closer the simulation of the temperature is to the test temperature. The heat transfer of temperature field is well illustrated by the simulation. According to the simulation temperature, combined with the changes of sub-surface hardness , the degree of thermal damage can be predicted.
出处 《计算机仿真》 CSCD 北大核心 2015年第1期229-235,共7页 Computer Simulation
基金 国家科技重大专项(2011ZX04016-041)
关键词 窄深槽 磨削 生死单元 温度仿真 热损伤 Narrow-and-deep slop Grinding Unit life and death Temperature simulation Thermal damage
  • 相关文献

参考文献14

二级参考文献30

  • 1徐西鹏.难加工材料高效切磨削的基础研究:[博士学位论文].南京航空航天大学,1992..
  • 2李远.锯切花岗石过程中的力和能量特征:[硕士学位论文].华侨大学,1999..
  • 3Shaw M C. The Importance of Temperature in Grinding[J]. Journal of Mechanical Working Technology, 1988, 17: 343-355.
  • 4Malkin S. Grinding Technology: Theory and Application of Machining with Abrasives [M]. New York: John Wiley and Sons, 1989.
  • 5Jaeger J C. Moving Sources of Heat and the Temperature at Sliding Contacts[C]//Proceedings of the Royal Society of New South Wales. Wales, England, 1942: 203-224.
  • 6Isenberg J, Malkin S. Effects of Variable Thermal Properties on Moving-band-source Temperatures [J]. J. Engng. Ind. Trans. ASME, 1975, 55: 1074-1078.
  • 7Li Y Y, Chen Y. Simulation of Surface Grinding [J]. J. Engng. Mater. Technol. Trans. ASME, 1989, 111: 46-53.
  • 8Mamalis A G, Kundrak J, Manolakos D E, et al. Effect of the Workpiece Material on the Heat Affected Zones during Grinding: a Numerical Simulation[J]. Int. J. Adv. Manuf. Technol. , 2003, 22: 761-767.
  • 9Mahdi M, Zhang L C. The Finite Element Thermal Analysis of Grinding Processes by ADINA[J]. Computers & Structures, 1995, 56: 313-320.
  • 10Lefebvre A, Vieville P, Lipinski P, et al. Numerical Analysis of Grinding Temperature Measurement by the Foil/workpiece Thermoeouple Method [J]. International Journal of Machine Tools & Manufacture, 2006, 46: 1716-1726.

共引文献71

同被引文献33

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部