期刊文献+

复合分形插值算法在海底地形仿真中的应用 被引量:7

Application of Complex Fractal Interpolation Algorithm in Seabed Terrain Simulation
下载PDF
导出
摘要 在海底环境信息系统的研究中,海底地形建模是的关键技术之一。而海底环境信息系统对于水下潜器路径规划至关重要。为使海底地形模型具有更好的精度,且能表现出海底真实地表复杂、不规则的分形特性,提出了一种改进的分数布朗运动(f Bm)和改进的迭代函数系统(IFS)的复合分形插值算法。Matlab仿真结果表明,提出的算法建立的海底地形模型的分形特征与真实地表特征更加接近。计算分析后发现,提出的模型与传统插值算法或单一的分形插值算法建立的海底地形模型相比,具有更高的精度,更加适用于水下潜器的路径规划。 One of the key technologies of Subsea Environmental Information System is seabed terrain modeling. And Subsea Environmental Information System is critical to underwater vehicle path planning. To make the seabed terrain model to show a better accuracy and the complex and irregular fractal characteristics of real surface, this paper presented a complex fractal interpolation algorithm based on fractional Brownian motion and Iterated Function System. And both of the two fractal interpolation algorithms have been improved. Simulating the seabed terrain with Matlab, the model built by the complex fractal interpolation algorithm has a fractal surface closer to real surface. After calculation analysis, comparing this model with other ones built by conventional interpolation algorithms or single fractal interpolation algorithm, it has a higher accuracy and applies to underwater vehicle path planning better.
出处 《计算机仿真》 CSCD 北大核心 2015年第1期254-258,366,共6页 Computer Simulation
基金 国家自然科学基金资助项目(51179039 51379047)
关键词 海底地形仿真 格网内插 分形插值 分数布朗运动 迭代函数系统 Seabed terrain simulation Grid interpolation Fractal interpolation Fractional Brownian motion Iterated function system
  • 相关文献

参考文献15

二级参考文献74

共引文献250

同被引文献75

  • 1刘开周,刘健,封锡盛.一种海底地形和海流虚拟生成方法[J].系统仿真学报,2005,17(5):1268-1271. 被引量:10
  • 2刘春,吴杭彬.基于平面不规则三角网的DEM数据压缩与质量分析[J].中国图象图形学报,2007,12(5):836-840. 被引量:29
  • 3韦廖军,兰度.三角网模型叠加法在土方计算中的应用探讨[J].城市勘测,2007(4):87-90. 被引量:8
  • 4Barnsley M F. Fractal functions and interpolation[J]. Constructive Approximation,1986,2(1):303-329.
  • 5Pabst J L,Jense H. Dynamic terrain generation based on multifractal techniques[M]//Chen M,Townsend P,Vince J A. High Performance Computing for Computer Graphics and Visualisatio. London:Springer-Verlag London Limited,1996:186-203.
  • 6Huang Y M,Chen C J. 3D fractal reconstruction of terrain profile data based on digital elevation model[J]. Chaos Solitons & Fractals,2009,40(4):1741-1749.
  • 7Taconet O,Ciarletti V. Estimating soil roughness indices on a ridge-and-furrow surface using stereo photogrammetry[J]. Soil and Tillage Research,2007,93(1):64-76.
  • 8Anderson A N,McBratney A B,Crawford J W. Applications of fractals to soil studies[J]. Advances in Agronomy,1997,63:1-76.
  • 9Mandelbrot B B,Ness J W. Fractional brownian motions,fractional noises and applications[J]. Society for Industrial and Applied Mathematics,1968,10(4):422-437.
  • 10Lu Z X,Chen N,Perdok U D,et al. Characterisation of soil profile roughness[J]. Biosystems Engineering,2005,91(3):369-377.

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部