期刊文献+

长江分汊河口水力几何形态 被引量:1

Hydraulic geometry of branching channels in Yangtze estuary
下载PDF
导出
摘要 为了揭示潮汐河口中居显著地位分汊河口的演变机理,减轻长江口深水航道淤积.基于积分形式二维连续方程、二维阻力公式、无因次宽深比关系与时变水流挟沙能力公式,建立分汊河口水力几何形态理论关系,且表明汊道与单一河道平均水深之比为分流比的2/7次方.据此计算获得了长江口拦门沙顶部最大平衡水深为6.91m,与长期实测的自然水深相一致,显示了水力几何形态关系的合理性.引入主槽流量比例概念,进一步修正水力几何形态关系,使之适合于丁坝作用河段.据此计算得到在一、二和三期治理工程后北槽的最大平衡水深分别为8.40、8.91和9.92m,为制定长江口治理方略提供了理论依据. For the purpose of revealing the mechanism of morphological evolution in the branching estuary which is a prominent type of tidal estuaries and reducing siltation in the Yangtze Estuary deepwater channel,a new relation for the hydraulic geometry of branching estuary was developed by solving the 2D continuity equation in integral form,2Dresistance equation,dimensionless width-depth ratio relation and time-dependent sediment transport capacity formula.The ratio of mean depths of a distributary channel and the main stream is a power function of its bifurcation ratio with an exponent of 2/7.The maximum equilibrium depth at the top of mouth bar in the Yangtze Estuary was calculated as 6.91 mby the proposed hydraulic geometry relation.The result agrees well with the depth acquired from long-term measurement data,which proves the reasonability of the new relation.Furthermore,the hydraulic geometry relation was modified to consider the effect of the groins built in the North Passage by introducing the concept of main channel discharge proportion.The maximum equilibrium depth of the North Passage after the three stages of deepwater channel regulation project was hereby calculated as 8.40,8.91 and 9.92 m.This lays a theoretical foundation for developing strategies to regulate the Yangtze estuary.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第12期2266-2270,2292,共6页 Journal of Zhejiang University:Engineering Science
基金 教育部博士点基金资助项目(20120101110108) 国家自然科学基金资助项目(40776007)
关键词 水力几何形态 分汊河口 平衡水深 长江口 hydraulic geometry branching estuary equilibrium depth Yangtze estuary
  • 相关文献

参考文献9

  • 1孙志林,金元欢.分汊河口的形成机理[J].水科学进展,1996,7(2):144-150. 被引量:16
  • 2金镠,虞志英,何青.深水航道的河势控制和航道回淤问题[J].中国港湾建设,2012,32(1):1-8. 被引量:21
  • 3刘杰.长江口深水航道河床演变与航道回淤研究[D].上海:华东师范大学,2010.
  • 4严以新,高进,宋志尧,诸裕良.长江口九段沙分流计算模式及工程应用[J].水利学报,2001,32(4):79-84. 被引量:5
  • 5窦国仁.平原冲积河流及潮汐河口的河床形态.水利学报,1964,(2):1-13.
  • 6SASSI M G, HOITINK A J F, de BRYE B, et al. Downstream hydraulic geometry of a tidally influenced river delta[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F4).
  • 7NIELD J M, WALKER D J, LAMBERT M F. Two-dimensional equilibrium morphological modelling of a tidal inlet: an entropy based approach[J]. Ocean Dynamics, 2005, 55: 549-558.
  • 8孙志林,夏珊珊,朱晓,许丹,倪晓静,黄赛花.河口时变水流挟沙能力公式[J].清华大学学报(自然科学版),2010,50(3):383-386. 被引量:6
  • 9谢鉴衡.河床演变及整治[M].2版.北京:中国水利水电出版社,1996.

二级参考文献35

  • 1高进.冲积河流的汇合与分流[J].地理学报,1994,49(5):429-439. 被引量:8
  • 2窦国仁,董风舞,XibingDou.潮流和波浪的挟沙能力[J].科学通报,1995,40(5):443-446. 被引量:126
  • 3金镠,黄咏烨.河口整治技术在长江口深水航道治理工程中的若干新进展[J].中国港湾建设,2005,25(6):11-16. 被引量:6
  • 4Streeter V L.流体力学[M].北京:高等教育出版社,1987..
  • 5张海燕.河床演变工程学[M].科学出版社,1990..
  • 6钱宁 张仁 等.河床演变学[M].北京:科学出版社,1997..
  • 7刘家驹.在风浪和潮流作用下淤泥质浅滩含沙量的确定.水利水运科学研究,1988,(2):22-26.
  • 8ZHANG Ruijin, XIE Jianheng. Sedimentation Research in China [M]. China Water and Power Press, 1933.
  • 9Gleizon P, Punt A G, Lyons M G. Modeling hydrodynamics sediment flux within a macrotidal estuary: Problems and solutions [J]. The Science of The Total Environment, 2003, 314- 316(1) : 589 - 597.
  • 10Tayfur G. Applicability of sediment transport capacity models for nonsteady state erosion from steep slopes[J].Journal of Hydrologic Engineering, 2002, 127(3): 252 -259.

共引文献65

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部