期刊文献+

结构最大刚度拓扑优化的隐式方法 被引量:6

An Implicit Topology Optimization Method for the Maximum Structural Stiffness
下载PDF
导出
摘要 提出了结构在力、位移以及力与位移混合作用方式下结构最大刚度拓扑优化的一般性设计方法。设计目标为最大化结构的最小总势能,设计变量为单元的密度。通过SIMP(solid isotropic materials with penalization)准则建立设计变量与结构性能之间的关系。通过KKT(Karush-Kuhn-Tucker)条件推导了优化问题的最优解条件;并给出了基于最优解条件的变量迭代格式。迭代格式不显含目标函数,是一种隐式的求解方法。数值算例表明,对于结构承受力、位移以及力和位移混合作用时均能够获得准确结果,且方法具有简洁高效的特点。 A general topology optimization method was proposed for a structure subjected to the force,the displacement and the mixed loading of force and displacement to maximize the structural stiffness.The objective function is the maximization of the structural minimum total potential energy and the design variable is the density of an element.The SIMP (solid isotropic materials with penalization) proposition is used to relate the density and the structural properties.Moreover,the optimal criterion is derived through the KKT (Karush-Kuhn-Tucker) condition.Based on this criterion,the iteration scheme of variables is shown.The objective function is not included explicitly in this scheme; hence,it is an implicit method.Numerical examples show that the present method can obtain the accurate results for structures subjected to force,displacement and the mix action of force and displacement.Also,the method is simple and efficient.
作者 苏文政
出处 《科学技术与工程》 北大核心 2015年第1期132-134,138,共4页 Science Technology and Engineering
基金 国家自然科学基金(11002031) 辽宁省高校优秀人才支持计划(LJQ2012040)资助
关键词 刚度 总势能 拓扑优化 准则法 stiffness total potential energy topology optimization criterion method
  • 相关文献

参考文献8

  • 1Bendsoe M P, Diaz A, Kikuchi N. Topology and generalized layout oplimization of elastic struclures. Bendsoe MP, Soares CAM. Topolo- gy design of structures, Kluwer Academic Publishers, 1993: 159-205.
  • 2Bendsce M P, Sigmund O. Topology optimization: theory, methods and applications. Berlin: Springer, 2003.
  • 3Hassani B, Hinton E. A review of homogenization and topology opti- mization III-topology optimization using optimality criteria. Comput- ers & Structures, 1998 , 69 (6) : 739-756.
  • 4Niu F, Xu S, Cheng G. A general Iormulation of structural topology optimization for maximizing structural stiffness. Structural and Multi- disciplinary Optimization, 2011 , 43 (4) : 561-572.
  • 5Barbarosie C, Lopes S. A generalized notion of compliance. Comptes Rendus Memlique, 2011 , 339(10) : 641-648.
  • 6Pedersen P, Pedmen N. Design objectives with non-zero prescribed support displacements. Structural and Multidisciplinary Optimization, 2011 , 43(2) : 205-214.
  • 7Klarbring A, Strtimberg N. A note on the rain-max formulation of stiffness optimizalion including non-zero prescribed displacements. Structural and Multidisciplinary Optimization, 2011, 45 (1): 147-149.
  • 8苏文政,张永存,刘书田.考虑位移补偿的结构几何稳定性拓扑优化[J].力学学报,2013,45(2):214-222. 被引量:3

二级参考文献10

  • 1隋允康,龙连春.智能抛物面天线多目标最优控制[J].计算力学学报,2005,22(6):671-676. 被引量:2
  • 2Bendsoe MP, Diaz A, Kikuchi N. Topology and generalized layout optimization of elastic structures. In: Bendsoe MP, Soares CAM, editors. Topology Design of Structures. Boston: Kluwer Academic Publishers, 1993. 159-205.
  • 3Pedersen P, Pedersen N. Design objectives with non-zero prescribed support displacements. Structural and Multidisciplinary Optimization, 2011, 43(2): 205-214.
  • 4Niu F, Xu S, Cheng G. A general formulation of structural topology optimization for maximizing structural stiffness. Structural and Multidisciplinary Optimization, 2011, 43(4): 561-572.
  • 5苏文政. 基于偶应力理论的多孔固体材料与结构的分析与设计. [博士论文]. 大连: 大连理工大学, 2009.
  • 6Svanberg K. The method of moving asymptotes-A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(22): 359-373.
  • 7Nishiwaki S, Frecker MI, Min S, et al. Topology optimization of compliant mechanisms using the homogenization method. International Journal for Numerical Methods in Engineering, 1998, 42(3): 535-559.
  • 8Pedersen CBW, Buhl T, Sigmund O. Topology synthesis of large-displacement compliant mechanisms. International Journal for Numerical Methods in Engineering, 2001, 50(12): 2683-2705.
  • 9Irschik H. A review on static and dynamic shape control of structures by piezoelectric actuation. Engineering Structures, 2002, 24(1): 5-11.
  • 10杨东武,仇原鹰,段宝岩.预应力索网天线结构优化设计[J].应用力学学报,2008,25(4):617-621. 被引量:8

共引文献2

同被引文献97

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部