期刊文献+

碲化铋基温差发电模块输出功率优化试验研究 被引量:2

Experimental study for optimizing the output power of Bi Te-based thermoelectric modules
下载PDF
导出
摘要 同位素温差发电器在深空探测活动中具有广泛的应用背景。为优选温差发电模块构型、提高输出功率,制备了具有不同热电元件厚度的碲化铋基温差发电模块;并通过建立的试验测试系统,测量了不同温差条件下发电模块的输出功率和匹配负载随热电元件厚度的变化。试验结果表明,在所研究的热电元件厚度范围内,随着热电元件厚度的减小,模块的输出功率呈线性增大趋势,而匹配负载则呈线性减小趋势。在热源温度478 K、热沉温度300 K的条件下,测得热电元件厚度为1.0 mm的模块的最大输出功率达到约8.2 W,最大功率面积比约为0.52 W·cm-2。 Radioisotope thermoelectric generators (RTG) are widely utilized in deep space explorations. In order to enhance the output power of the thermoelectric modules and optimize their geometries, BiTe-based thermoelectric modules with different thermoelement thicknesses are prepared. An experiment setup is built to measure the output power and the match load of the thermoelectric modules along with the thickness of thermoelement under various temperature differences. According to the test results, as the thermoelement thickness decreases, the output power of the thermoelectric module increases linearly, meantime, the corresponding load resistance sees an opposite trend. The maximum output power of a thermoelectric module with a thermoelement thickness of 1.0 mm reaches almost 8.2W, and the area-specific output power is nearly 0.52W·cm-2.
出处 《航天器环境工程》 2014年第6期635-639,共5页 Spacecraft Environment Engineering
基金 国家自然科学基金项目(编号:11372356 51272080)
关键词 温差发电 热电元件 碲化铋 输出功率 试验研究 thermoelectric generator thermoelement BiTe output power test study
  • 相关文献

参考文献7

二级参考文献97

共引文献77

同被引文献22

  • 1张建中,任保国,王泽深,郑海山.放射性同位素温差发电器在深空探测中的应用[J].宇航学报,2008,29(2):644-647. 被引量:20
  • 2蒋俊,李亚丽,许高杰,崔平,吴汀,陈立东,王刚.制备工艺对p型碲化铋基合金热电性能的影响[J].物理学报,2007,56(5):2858-2862. 被引量:14
  • 3RINEHART G H. Design characteristics and fabricationof radioisotope heat sources for space missions[J].Progress in Nuclear Energy, 2001, 39: 305-319.
  • 4HAMMEL T E, BENNETT R, KEYSER S, et al.Multi-Mission Radioisotope Thermoelectric Generator(MMRTG): proven power for next generationradioisotope power systems: AIAA 2012-4063[R].
  • 5CHENG F Q, HONG Y J, ZHU C. A physical model forthermoelectric generators with and without Thomsonheat[J]. Journal of Energy Resources Technology, 2014,136(1): 011201.
  • 6ZIOLKOWSKI P, POINAS P, LESZCZYNSKI J, et al.Estimation of thermoelectric generator performance byfinite element modeling[J]. Journal of ElectronicMaterials, 2010, 39(9): 1934-1943.
  • 7ROWE D M, GAO M. Design theory of thermoelectricmodules for electrical power generation[C].IEEProceedings of Science, Measurement and Technology.Cardifff, UK, 1996, 143(6): 351-356.
  • 8D’ANGELO J, DOWNEY A, HOGAN T P, et al.Temperature dependent thermoelectric material powerfactor measurement system[J]. Review of ScientificInstruments, 2010, 81: 075107.
  • 9HENDRICKS T J, HOGAN T, CASE E D, et al.Advanced soldier thermoelectric power system forpower generation from battlefield heat sources: PNNL-19342[R]. Office of Scientific & Technical InformationTechnical Reports, 2010. DOI: 10.2172/1018164.
  • 10SCHOCK H, CASE E, D’ANGELO J, et al.Thermoelectric conversion of waste heat to electricity inan IC engine powered vehicle: DEFC2604NT42281[R],2011. DOI: 10.2172/1045212.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部