摘要
提出一种新的基于三元分组列车测量拓扑结构的方法,此方法利用叶节点的层析信息将叶节点进行聚类,依据时延抖动和丢包率两个参数计算节点间的相关性,有底向上构造网络拓扑树.该方法较之前方法有效减少了探测包的发送量,并且其推断准确度有所提升,不受到网络负载的影响.最后在NS2仿真环境下进行实验,验证该方法的有效性与准确度,并与其他方法进行比较.
In this paper a new method based on "sandwich" packet sequences to infer network topology is proposed. The method uses the height of the leaf nodes to cluster, and according two parameters ( delay - jitter and packet loss rate) to calculate the correlation between two nodes, from the bottom- up to construct network topology tree. Compare with the former methods, this method effectively reducing the amount of probe packets, it' s inference accuracy improved and not affected by network load. The validity and accuracy of the method are simulated in NS2, and compared with other topology inference methods
出处
《哈尔滨师范大学自然科学学报》
CAS
2014年第6期54-59,共6页
Natural Science Journal of Harbin Normal University
基金
甘肃省自然科学基金(1308RJZA111)
关键词
三元分组列车
双参数
网络拓扑结构
NS2仿真
The " sandwich" packet sequences
Double - parameters
Network topology
NS2simulation