期刊文献+

燃料改性与进气预处理降低甲醇-柴油PAHs的数值模拟

Numerical Simulation of Reducing Methanol-diesel PAHs through Fuel Modification and Intake Pretreatment
下载PDF
导出
摘要 通过构建由228种组分和1 584个基元反应组成的甲醇-柴油PAHs计算模型,研究了燃料改性方案、空气稀释比以及过量空气系数、初始温度,初始压力对甲醇-柴油PAHs的影响。结果表明,甲醇-柴油PAHs模型能准确预测甲醇-柴油燃烧过程中的反应温度,甲醇摩尔分数,反应中间产物CO,CO2,O2浓度随时间的变化规律和着火延迟。通过进气预处理,降低空气稀释因子可以有效降低甲醇-柴油燃烧过程中PAHs的浓度;采用氢气、甲烷作为燃料添加剂进行燃料改性可以有效改善油气混合,提高火焰温度和火焰的绝热燃烧速度,有利于PAHs的氧化分解。提高过量空气系数可以增加反应中间产物H和OH自由基的数量,降低芳香烃各组分的浓度;提高反应的初始温度,降低反应初始压力,使得燃烧化学反应始点提前,有利于降低PAHs的浓度。 Based on the numerical model of methanol‐diesel PAHs composed of 228 composition and 1 584 elementary reac‐tions ,the influences of fuel modification scheme ,air dilution ratio ,excess air coefficient ,initial temperature and pressure on methanol‐diesel PAHs were studied .The results show that the model can predict the reaction temperature of methanol‐diesel combustion ,the mole fraction of methanol ,CO ,CO2 and O2 concentration variation with time and the ignition delay time accu‐rately .Through the intake pretreatment ,the air dilution factor can be decreased so as to reduce PAH formation effectively dur‐ing the methanol‐diesel combustion .Taking hydrogen and methane as fuel additive ,the fuel modification is realized so as to im‐prove the air‐fuel mixing ,increase the flame temperature and adiabatic combustion velocity and facilitate the oxidation and de‐composition of PAHs .Increasing the excess air coefficient can increase the quantity of H and OH radicals intermediate products and decrease the concentration of each component for PAHs .The increase of initial reaction temperature and the decrease of ini‐tial reaction pressure advance the starting point of chemical reaction ,which decrease the concentration of PAHs .
出处 《车用发动机》 北大核心 2014年第6期1-7,共7页 Vehicle Engine
基金 国家自然科学基金(51376083) 江苏省高校自然科学基金(10KJA470009 13KJA470001) 江苏省2013年度普通高校研究生科研创新计划项目(CXZZ13-0672) 2011年江苏高校优势学科建设工程资助项目(PAPD)
关键词 甲醇 柴油 多环芳香烃 燃料改性 进气预处理 仿真 methanol diesel PAHs fuel modification intake pretreatment simulation
  • 相关文献

参考文献18

  • 1Yuichi Miyabara,Shunji Hashimoto,Masaru Sayai,et al.PCDDs and PCDFs in vehicle exhaust particulates in Japan[J].Chemosphere,1999,39(1):143-150.
  • 2Shudo T,TakahashiT.Influence of reformed gas composition on HCCI combustion of onboard methanol-reformed gases[C].SAE Paper 2004-01-1908.
  • 3Timothy J H,Frederick L D.A comprehensive mechanism for methanol oxidation[J].International Journal of Chemical Kinetics,1998,30(11):805-830.
  • 4Aronowitz D,Santoro R J,Dryer F L,et al.Kinetics of the oxidation of methanol:Experimental results semiglobal modeling and mechanistic concepts[C]//17th symposium(international)on combustion.Leeds:The Combustion Institute,1979:633-644.
  • 5Inal F,Senkan S.Effects of oxygenate additives on polycyclic aromatic hydrocarbons(PAHs)and soot formation[J].Combustion Science and Technology,2002,174(9):1-19.
  • 6Guo H,Smallwood G J,Liu F,et al.The effect of hydrogen addition on flamm ability limit and NOx emission in ultra-lean counter flow CH4/air premixed flames[C]//Thirty Symposium(International)on Combustion.Pittsburgh:the Combustion Institute,2005.
  • 7Gemci Yakut,Chigier k,N Ho TC.Experimental Study of Flash Atomization of Binary Hydrocarbon Liquids[J].Int.J.Multiphase Flow,2004,30:395-417.
  • 8Masuda S,Hosokawa S,Tu X L,et al.Destruction of gaseous pollutants by surface-induced plasma chemical process[J].IEEE Tans Indu Appl,1993,29(4):781-786.
  • 9赵昌普,宋崇林,董素荣,张延峰.柴油机燃烧多环芳香烃前驱体等物质的化学动力学研究[J].燃烧科学与技术,2005,11(1):29-35. 被引量:8
  • 10Seiser H,Pitsch H,Seshadri,et al.Extinction and Autoignition of n-Heptane in Counterflow Configuration[J].Proceedings of the Combustion Institute,2000,28:2029-2037.

二级参考文献58

  • 1申立中,杨永忠,雷基林,毕玉华,颜文胜,张韦.不同海拔地区下增压中冷柴油机的性能研究[J].汽车工程,2005,27(6):674-677. 被引量:22
  • 2袁银南,张恬,梅德清,王忠.柴油机燃用生物柴油燃烧与排放[J].江苏大学学报(自然科学版),2006,27(3):216-219. 被引量:21
  • 3申立中,杨永忠,雷基林,毕玉华,颜文胜,杨育军.不同海拔下增压中冷柴油机性能和排放的研究[J].内燃机学报,2006,24(3):250-255. 被引量:37
  • 4钟北京,席军.正庚烷对冲扩散火焰中多环芳烃形成机理的简化[J].燃烧科学与技术,2007,13(2):163-168. 被引量:2
  • 5[1]Bockhorn H, editor. Soot Formation in Combustion:Mechanisms and Models. Berlin: Springer, 1994
  • 6[2]Frenklach M, et al. Detailed Kinetic Modeling of Soot Formation on Shock-Tube Pyrolysis of Acetylene. Twentieth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1985:887-901
  • 7[3]Frenklach M, Warnatz J. Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame. Combustion Science and Technology, 1987, 51:265-283
  • 8[4]Frenklach M, Wang H. Detailed Mechanism and Modeling of Soot Particle Formation. In: Bockhorn H(Ed.).Soot Formation in Combustion. Springer-Verlag, Berlin,1994. 162-190
  • 9[5]Wang H, Frenklach M. A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames. Combustion and Flame,1997, 110:173-221
  • 10[6]Appel J, Bockhorn H, Frenklach M. Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics:Laminar Premixed Flames of C2 Hydrocarbons. Combustion and Flame, 2000, 121:122-136

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部