期刊文献+

基于灰理论的电离层foF2短期预报方法 被引量:1

Method for Short-term Forecasting of the Ionospheric foF2 Based on Grey Theory
下载PDF
导出
摘要 将灰理论应用于电离层fo F2的短期预报中,基于灰色距离信息熵确定样本序列最佳灰色预报长度,构建基于残差修正的预报模型,并利用中国地区多个观测站的观测数据进行检验。研究表明,平均灰色距离信息熵的计算结果反映了太阳自转的周期性影响;高纬度地区预报方法的精度高于低纬度地区,且在太阳活动较为剧烈的季节,预报方法的误差相对较大;提前1天预报结果的平均相对残差在1MHz以内,平均精度在90%以上。为今后电离层短期预报提供一种新的思路。 The gray theory is applied to the ionospheric foF2 short-term forecast, grey range informationentropy is defined to determine the optimum grey forecasting length of the sample sequence, theforecasting model based on residual error correction is constructed, and the observation data of multipleionospheric observation stations in China are adopted for test. The result shows that the average greyrange information entropy calculation results reflect the cyclical effects of solar rotation; precision of theforecasting method in high latitudes is higher than low latitudes, and its error is large relatively in moreintense solar activity season; the effect of forecasting 1 day in advance of average relative residuals lessthan 1MHz, the average precision more than 90%. Provide a new way of thinking for the ionospheric foF2short-term forecast in the future.
作者 王勇 杨军华
出处 《科技通报》 北大核心 2015年第1期46-50,共5页 Bulletin of Science and Technology
关键词 电离层 短期预报 灰理论 ionosphere short-term forecasting grey theory
  • 相关文献

参考文献3

二级参考文献32

  • 1王世凯,焦培南,柳文,凡俊梅.利用人工神经网络重构区域电离层临界频率分布[J].电波科学学报,2004,19(6):742-747. 被引量:7
  • 2LIU Ruiyuan,LIU Shunlin,XU Zhonghua,WU Jian,WANG Xianyi,ZHANG Beichen,HU Hongqiao.Application of autocorrelation method on ionospheric short--term forecasting in China[J].Chinese Science Bulletin,2006,51(3):352-357. 被引量:17
  • 3杨正瓴,田勇,张广涛,林孔元.相似日短期负荷预测的非线性理论基础与改进[J].电网技术,2006,30(6):63-66. 被引量:29
  • 4CANDER LJ R, MILOSAVLJEVIC M, STANKOVIC S ,et al. Ionospheric forecasting technique by artificial neural network [J]. Electron, Lett., 1998, 34 (6): 1573-1574.
  • 5MUHTAROV P, KUTIEV I. Autocorrelation method fortemporal interpolation and short-term prediction of ionospheric data [J]. Radio Science, 1999, 34 (2): 459-464.
  • 6MUHTAROV P, KUTIEV I, Cander L. Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters[J]. Inverse Prob- lems, 2002, 18(1) :49-65.
  • 7MIKHAILOV A V, de la MORENA B A, MIROG. and MARiN D. A method for f0 F2 monitoring over spain using the El arenosillo digisonde current observations[J]. Annali di Geofisica, 2000, 42(4): 683-689.
  • 8MARIN D, MIROG. and MIKHAILOV A V. A method for f0F2 short-term prediction[J]. Physics and Chemistry of the Earth, 2000, 25(4) : 327-332.
  • 9LUNDSTEDT H. Neural network and prediction of solar terrestrial effects[J]. Planet Space Sci. , 1992, 40 (4): 457-464.
  • 10Bilitza D,Reinisch B W.International reference ionosphere 2007:Improvements and new parameters[J].Adv. Space Res.,2008,42:599-609.

共引文献20

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部