摘要
The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly forms π-adsorbed butadiene(πs and πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst.
The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly formsπ-adsorbed butadiene (πs andπd) andσ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst.
基金
financially supported by the National Natural Science Foundation of China(No.20903054)
Liaoning Provincial Natural Science Foundation(No.2014020107)
Program for Liaoning excellent talents in university(No.LJQ2014041)
sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(SRF for ROCS,SEM)