摘要
构造了一个用于对流扩散问题的任意四边形有限元,在任意四边形网格上得到了最优收敛阶O(h^(3/2)),这是Wilson元和类Wilson元所得不到的,这里h是趋向于0的剖分参数.
In this paper,a new arbitrary quadrilateral nonconforming finite element method(FEM) is constructed and applied to the convection-diffusion problems.The optimal convergence result of order O(h^3/2),which can not be obtained by the Wilson element and quasi-Wilson element for arbitrary quadrilateral meshes,is derived,where h is the subdivision parameter tending to zero.
出处
《系统科学与数学》
CSCD
北大核心
2014年第9期1065-1073,共9页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10971203,11271340)资助课题
关键词
任意四边形FEM
对流扩散问题
最优误差估计
Arbitrary quadrilateral FEM
convection-diffusion problems
optimal error estimate