期刊文献+

均值-方差准则下CEV模型的最优投资和再保险 被引量:8

OPTIMAL REINSURANCE AND INVESTMENT FOR CEV MODEL UNDER MEAN-VARIANCE CRITERION
原文传递
导出
摘要 研究了经典Cramer-Lundberg风险模型的均值-方差策略选择问题.保险公司可以采取再保险和在金融市场上投资来减小风险和增加财富.风险资产的价格通过CEV模型来描述,它是Black-Scholes模型的推广.通过把原先的均值-方差问题转化为一个辅助问题,应用线性-二次控制理论解决了辅助问题.最终获得了最优的再保险、投资策略和有效边界的显式解,同时得到了最小终值方差和相应的策略. This paper studies mean-variance strategies selection problem for classical Cramer-Lundberg risk model.Proportional reinsurance and investment in finance market are adopted by the insurance company to reduce risk and increase profit.The risky asset price describe by a CEV(constant elasticity of variance) model,which is an extension of Black-Scholes model.We change the original mean-variance problem into an auxiliary problem.Through linear-quadratic(LQ) control theory,we solve the auxiliary problem.Finally,closed form of optimal reinsurance,investment strategies and efficient frontier are obtained,meanwhile the minimum terminal variance along with the portfolio that attains the minimum variance are obtained.
作者 杨鹏
出处 《系统科学与数学》 CSCD 北大核心 2014年第9期1100-1107,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(11271375)资助 西京学院校级科研项目(XJ130246)资助课题
关键词 均值-方差准则 CEV模型 线性二次控制 再保险 投资 有效边界 Mean-variance criterion CEV model linear-quadratic control reinsurance investment efficient frontier
  • 相关文献

参考文献16

  • 1Browne S. Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin. Mathematics Methods Operator Research, 1995, 20(4): 937-957.
  • 2Yang H, Zhang L. Optimal investment for insurer with jump-diffusion risk process. Insurance: Mathematics and Economies, 2005, 37(3): 21-51.
  • 3Bai L, Guo J. Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint. Insurance: Mathematics and Economics, 2008, 42(3): 968-975.
  • 4常浩,荣喜民.负债情形下效用投资组合选择的最优控制[J].应用概率统计,2012,28(5):457-470. 被引量:8
  • 5Xie S X. Continuous-time portfolio selection with liability and regime switching. Insurance: Math- ematical and Economics, 2009, 45(1): 148-155.
  • 6Markowitz H M. Portfolio section. Journal of Finance, 1952, 7(1): 77-91.
  • 7Zhou X Y, Li D. Continuous-time meanvariance portfolio selection with rergime switching: A stochastic LQ framework. Applied Mathematics and Optimization, 2000, 42(1): 19-33.
  • 8Li D, Ng W L. Optimal dynamic portfolio selection: Multi-period mean-variance formulation. Mathematics Finance, 2000, 10(3): 387-406.
  • 9Zhou X, Yin G. Markowitz's mean-variance portfolio selection with rergime switching: A continuous-time model. SIAM Journal on Control and Optimal, 2003, 42(4): 1466-1482.
  • 10毕俊娜.保险和行为金融中的均值一方差最优控制问题.天津:南开大学,2011.

二级参考文献70

  • 1吉小东,汪寿阳.中国养老基金动态资产负债管理的优化模型与分析[J].系统工程理论与实践,2005,25(8):50-54. 被引量:11
  • 2金秀,黄小原.资产负债管理模型及在辽宁养老金问题中的应用[J].系统工程理论与实践,2005,25(9):42-48. 被引量:12
  • 3Boulier J F, Huang S, Taillard G. Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund[J]. Insurance: Mathematics and Economics, 2001, 28: 173-189.
  • 4Cairns A J C, Blake D, Dowd K. Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans[J]. Journal of Economic Dynamics and Control, 2006, 30: 843-877.
  • 5Deelstra G, Grasselli M, Koehl P F. Optimal investment strategies in the presence of a minimum guarantee[J]. Insurance: Mathematics and Economics, 2003, 33: 189-207.
  • 6Xiao J, Zhai H, Qin C. The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts[J]. Insurance: Mathematics and Economics, 2007, 40: 302-310.
  • 7Gao J. Stochastic optimal control of DC pension funds[J]. Insurance: Mathematics and Economics, 2008, 42: 1159-1164.
  • 8Devolder P, Bosch Princep M, Dominguez Fabian I. Stochastic optimal control of annuity contracts[J]. Insurance: Mathematics and Economics, 2003, 33: 227-238.
  • 9Battocchio P, Menoncin F. Optimal pension management in a stochastic framework[J]. Insurance: Mathematics and Economics, 2004, 34: 79-95.
  • 10Zhou X, Li D. Continuous-time mean-variance portfolio selection: A stochastic LQ framework[J]. Applied Math- ematics and Optimization, 2000, 42: 19-33.

共引文献51

同被引文献32

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部