期刊文献+

聚苯乙烯分子链构象与其薄膜的玻璃化转变行为 被引量:3

Investigation on polystyrene chain conformation and glass transition behavior of its thin film
原文传递
导出
摘要 本文利用椭偏仪研究了成膜方式对不同分子量聚苯乙烯(PS)超薄膜玻璃化转变行为的影响.发现PS超薄膜的玻璃化转变温度(Tg)随着厚度降低的幅度与其成膜方式、分子量有关.当PS膜低于一定厚度时,旋涂法制备的PS膜的Tg比相同厚度浇铸法制备的膜低,且二者Tg差值随着厚度的降低而增大.这二种膜Tg的差值和Tg发生偏离时膜的临界厚度随聚苯乙烯分子量的增加而增加.利用非辐射能量转移荧光光谱证实成膜方式主要是影响PS分子链在膜中的构象.旋涂法制备的PS膜相对于本体在近表面区域分子链的形变更大.分子量愈大,分子运动时内摩擦阻力愈大,近表面区域分子的残余应力愈大.由于强运动能力的活性层(空气/PS界面)对PS薄膜Tg的影响占主导,相同厚度下分子链愈伸展,残余应力越大,PS薄膜的Tg越低,导致成膜方式与分子量的影响也愈大. The effect of film-formation methods on the glass transition behavior of polystyrene thin film was investigated by ellipsometry. It was found that the glass transition temperature(Tg) of thin film prepared by both spin-coating and solution-casting decreased with decreasing of film thickness. The Tg of spin-coated film depressed more dramatically than that of corresponding solution-cast film. What's more, the difference in Tg for the two kinds of the films and the critical thickness, at which the Tg of spin-coated films began to deviate from that of the corresponding solution-cast films, increased with increasing of the molecular weight of polystyrene. Nonradiative energy transfer fluorescence spectroscopy was employed to confirm that the chain conformation in polystyrene thin film was affected by the film-forming method. The chain deformed more dramatically at the near-surface region during the spin-coating process and the deformation increased with the increasing of the molecular weight, resulting in larger residual stress that provided additional driving force for the chain mobility at the near-surface region. Because the surface layer(air/PS interface)with high mobility dominated the Tg of the thin film, the larger residual stress resulted in the lower Tg.
出处 《中国科学:化学》 CAS CSCD 北大核心 2014年第12期1986-1995,共10页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(21174134 21374104) 浙江省自然科学基金项目(LY13B040005) 浙江理工大学研究生创新研究项目(YCX13002)的支持
关键词 成膜方式 聚苯乙烯 超薄膜 玻璃化转变 非辐射能量转移 film-formation method polystyrene ultrathin film glass transition nonradiative energy transfer
  • 相关文献

参考文献63

  • 1Zhang C, Fujii Y, Tanaka K. Effect of long range interactions on the glass transition temperature of thin polystyrene films. ACS Macro Lett, 2012, 1:1317-1320.
  • 2Zuo B, Qian C, Yan DH, Liu Y J, Liu WL, Fan H, Tian HK, Wang XP. Probing glass transitions in thin and ultrathin polystyrene films by stick-slip behavior during dynamic wetting of liquid droplets on their surfaces. Macromolecules, 2013, 46:1875-1882.
  • 3Ellison C J, Torkelson JM. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater, 2003, 2: 695-700.
  • 4Keddie JL, Jones RAL, Cory RA. Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett, 1994, 27: 59-64.
  • 5Gray LAG, Yoon SW, Pahner WA, Davidheiser JE, Roth CB. Importance of quench conditions on the subsequent physical aging rate of glassy polymer films. Macromolecules, 2012, 45:1701-1709.
  • 6Priestley RD, Ellison C J, Broadbelt LJ, Torkelson JM. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science, 2005, 309:456-459.
  • 7Lee JH, Chung JY, Stafford CM. Effect of confinement on stiffness and fracture of thin amorphous polymer films. ACS Macro Lett, 2012, 1: 122-126.
  • 8Liu YX, Chen EQ. Polymer crystallization of ultrathin films on solid substrates. Coordin Chem Rev, 2010, 254:1011-1037.
  • 9Vanroy B, Wubbenhorst M, Napolitano S. Crystallization of thin polymer layers confined between two adsorbing walls. ACS Macro Lett, 2013, 2:168-172.
  • 10Sharp JS, Forrest JA. Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys Rev Lett, 2003, 91: 235701.

二级参考文献29

  • 1Genzer J, Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science, 2000, 290:2130-2133
  • 2Luning J, Stohr J, Song K Y, Hawker C J, Iodice P, Nguyen C V, Yoon D Y. Correlation of surface and bulk order in low surface energy polymers. Macromolecules, 2001, 34:1128-1130
  • 3Bedford R G, Dunlap R D. Solubilities and volume changes attending mixing for the system: perfluoro-n-hexane-n-hexane. J Am Chem Soc, 1958, 80:282-285
  • 4Yang J P, Ni H G, Wang X F, Zhang W, Wang X P. Creating stable hydrophobic surfaces by poly(butyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units. Polym Bull, 2007, 59:105-115
  • 5Ni H G, Wang X F, Zhang W, Wang X P, Shen Z Q. Stable hydrophobic surfaces created by self-assembly of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units. Surf Sci, 2007, 601:3632-3639
  • 6Matsumoto K, Kubota M, Matsuoka H, Yamaoka H. Water-soluble fluorine-containing amphiphilic block copolymer: synthesis and aggregation behavior in aqueous solution. Macromolecules, 1999, 32:7122-7127
  • 7Urushihara Y, Nishino T. Effects of film-forming conditions on surface properties and structures of diblock copolymer with perfluoroalkyl side chains. Langmuir, 2005, 21:2614-2618
  • 8Wang X F, Ni H G, Xue D W, Wang X P, Feng R R, Wang H F. Solvent effect on the film formation and the stability of the surface properties of poly(methyl methacrylate) end-capped with fluorinated units. J Colloid Interface Sci, 2008, 321:373-383
  • 9Li K, Wu P P, Han Z W. Preparation and surface properties of fluorine-containing diblock copolymers. Polymer, 2002, 43: 4079-4086
  • 10Nishino T, Urushihara Y, Meguro M, Nakamae K. Surface properties and structures of diblock copolymer and homoploymer with perfluoroalkyl side chains. J Colloid Interface Sci, 2005, 283:533-538

共引文献7

同被引文献18

  • 1章舟.熔模精密铸造技术问答[M].北京:化学工业出版社,2007.
  • 2Vanhal I,Blond G.Impact of melting conditions of sucrose on its glass transition temperature[J].J Agric Food Chem,1999,47:4 285-4 290.
  • 3Maemura E,Cakmak M,White J L.Characterization of crystallinity and orientation in polyp-phenylene sulfide[J].International Polymer Processing,1988,3(2):79-85.
  • 4Delbreilh L,Negahban M,Benzohra M,et al.Glass transition investigated by a combined protocol using thermostimulated depolarization currents and differential scanning calorimetry[J].J Therm Anal Calorim,2009,96(3):865-871.
  • 5Matveev Y I,Grimberg V Y.The thermal stability of biopolymers[J].International Journal of Biological Macromolecules,2000,22(1):97-102.
  • 6Roudaut D,Simatos D,Champion D,et al.Molecular mobility around the glass transition temperature:A mini review[J].Innovative Food Science and Emerging Technologies,2004,12(5):127-134.
  • 7Assink R A.Platicization of poly(dimethyl siloxane)by highpressure gases as studied by NMR relaxation[J],Polym Sci:Polym Phys Ed,1974,12(1):228-290.
  • 8Mendelsohn R,Moore D J.Vibrational spectroscopic studies of lipid domains in biomembranes and model systems[J].Chem Phys Lipid,1998,96(1/2):141-157.
  • 9Fox T G,Flory P J.The glass temperature and related properties of polystyrene.Influence of molecular weight[J].Journal of Polymer Science,1954,14(75):315-319.
  • 10任婉婷,王颖.功率补偿式DSC曲线的理论分析[J].纺织学报,2010,31(1):11-18. 被引量:8

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部