期刊文献+

基于分层模版种子点的分水岭分割孤立性肺结节的方法 被引量:4

A detection method for solitary pulmonary nodules in PET-CT
原文传递
导出
摘要 针对肺部结节的分割问题,该文提出了一种基于分层模版种子点的分水岭分割方法。该方法在PET图像中采用基于SUV均值的分层次模版匹配算法检测出可疑区域,标记出分割种子点,同时在对应CT图像中使用改进的分水岭算法将可疑肺结节分割出来。将该方法与特征提取结合应用于肺结节的辅助诊断中。大量的实验结果表明:与当前单独采用CT或PET图像特征分割结果相比,该方法在确保真阳性以及分类准确性的基础上,极大降低了假阳性,从而表明了该方法在肺结节临床分割方面的有效性。 Combined features of solitary pulmonary nodules(SPNs)in both PET and CT images were considered to develop a method for solving SPNs detection problems.A hierarchical template matching algorithm and an improved watershed algorithm were used to detect the suspicious area in PET and CT images respectively. The developed method was applied to SPNs diagnoses to show that the method outperforms these methods based on CT features only or PET features only in terms of the false-positive rate reduction while guaranteeing the true-positive rate.Therefore,the results show the validity of the method in clinical SPNs segmentation.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第7期910-916,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(61240035 61373100) 山西省攻关项目(20120313032-3)
关键词 模版匹配算法 种子点 孤立性肺结节 分水岭 template matching algorithm seed point solitary pulmonary nodules watershed algorithm
  • 相关文献

参考文献13

  • 1罗希平,田捷,林瑶.一种基于主动轮廓模型的医学图像序列分割算法(英文)[J].软件学报,2002,13(6):1050-1058. 被引量:13
  • 2林瑶,田捷.医学图像分割方法综述[J].模式识别与人工智能,2002,15(2):192-204. 被引量:124
  • 3Cristoforetti A,Faes L,Ravelli F,et al.Isolation of the left atrial surface from cardiac multi-detector CT images based onmarker controlled watershed segmentation[J].Medical Engineering&Physics,2008,30(1):48-58.
  • 4Roche A,Ribes D,Bach-Cuadra M,et al.On the convergence of EM-like algorithms for image segmentation using Markov random fields[J].Medical Image Analysis,2011,15(6):830-839.
  • 5Vincent L,Soille P.Watershed in digital spaces:An efficient algorithm based on immersion simulations[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
  • 6Hris.K,Efstratiadis S N.Hybrid image segmentation using watersheds and fast region merging[J].IEEE Trans on Image Processing,1998,7(12):1684-1699.
  • 7ApostolovaI,Wiemker R,Paulus T,et al.Combined correction of recovery effect and motion blur for SUV quantification of solitary pulmonary nodules in FDG PET/CT[J].European Radiology,2010,20(8):1868-1877.
  • 8LUAN Hingxia,QI Feihu,XUE Zhong,et al.Multimodality image registration by maximization of quantitative–qualitative measure of mutual information[J].Pattern Recognition,2008,41(1):285-298.
  • 9Dehmeshki J,Ye X,Lin X Y,et al.Automated detection of lung nodules in CT images using shape-based genetic algorithm[J].Computerized Medical Imaging and Graphics,2007,31(6):408-417.
  • 10Suárez-Cuenca J J,Tahoces P G,Souto M,et al.Application of the iris filter for automatic detection of pulmonary nodules on computed tomography images[J].Computers in Biology and Medicine,2009,39(10):921-933.

二级参考文献16

  • 1Marr D 姚国正等(译).视觉计算理论[M].科学出版社,1988..
  • 2罗希平.生物信息处理:对自动指纹识别和医学图像分割的研究,博士论文[M].中国科学院自动化研究所人工智能实验室,2000..
  • 3田捷.实用图像处理技术[M].北京:电子工业出版社,1994..
  • 4Lai, K.F. Deformable contour: modeling, extraction, detection and classification[Ph.D. Thesis]. University of Wisconsin-Madison, 1994.
  • 5Kichenassamy, A., Kumar, A., Olver, P., et al. Gradient flows and geometric activecontour models. In: Proceedings of the IEEE International Conference onComputer Vision.1995. 810~815.
  • 6Malladi, R., Sethian, J., Vemuri, B. Shape modeling with front propagation: a levelset approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(2):158~175.
  • 7Caselles, V., Kimmel, R., Sapiro, G. Geodesic active contours. InternationalJournal of Computer Vision, 1997,22(1):61~79.
  • 8Xu Chen-yang, Prince, J.L. Generalized gradient vector flow external forces foractive contours. Signal Processing, 1998,71(2): 131~139.
  • 9McInerney, T., Terzopoulos, D. T-Snakes: topology adaptive snakes. Department ofComputer Science, University of Toronto, August 1999. http://www.scs.ryerson.ca/~tmcinern/papers.html.
  • 10Cohen, L.D., Cohen, I. Finite element methods for active contour models andballoons for 2D and 3D images. IEEE Transactions Pattern Analysis and MachineIntelligence,1993,15(11):1131~1147.

共引文献134

同被引文献40

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部