期刊文献+

基于纹理和梯度特征的多尺度图像融合方法 被引量:3

Multi-scale image fusion method based on the characteristics of texture and gradient
原文传递
导出
摘要 该文提出一种基于纹理和梯度特征的多尺度图像融合方法。采用纹理提取滤波器和边缘梯度滤波器模板分别对每层Gauss金字塔进行滤波,生成多尺度纹理和边缘图像,使得多分辨率变换域中能够将原图像中的纹理信息包含进来,从而为进一步融合提供更全面的信息量度。采用该文所提出的方法对红外与可见光图像进行融合仿真,并且与具有代表性的融合方法进行了比较。实验结果与图像融合质量评价显示了该文所提出方法的优越性。 This paper presents a multi-scale image fusion method based on texture and edge.After each level of Gaussian Pyramid was separately filtered by texture-extracting filters and edge gradient filters,a series of texture and edge images were generated including the texture information of the original image,which provides more comprehensive information measurement for further fusion.Infrared and visible images were fused utilizing the proposed image fusion method,with the fusion results compared with those of several traditional fusion methods.Experimental results and image fusion quality assessment show that the proposed fusion method demonstrates more superiority.
作者 程全 马军勇
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第7期935-941,共7页 Journal of Tsinghua University(Science and Technology)
基金 河南省科技厅重点科技攻关资助项目(132102210101)
关键词 纹理特征 梯度特征 图像融合 texture feature gradient feature image fusion
  • 相关文献

参考文献10

  • 1刘从义,敬忠良,肖刚,杨波.Feature-based fusion of infrared and visible dynamic images using target detection[J].Chinese Optics Letters,2007,5(5):274-277. 被引量:5
  • 2Mount D M,Netanyahu N S,Moigne J L.Efficient algorithms for robust feature matching[J].Pattern Recognition,1999,32(1):17-38.
  • 3Stockman G,Kopstein S,Benett S.Matching images to models for registration and object detection via clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,4(3):229-241.
  • 4Wang Y N,Lohmann B.Multisensor image fusion:Concept,method and application[R].University of Bremen,2000.
  • 5Burt P J,Adelson E H.The Laplacian pyramid as a compact image code[J].IEEE Trans on Communications,1983,31(4):532-540.
  • 6Barron D R,Thomas O D J.Image fusion through consideration of texture components[J].Electronics Letters,2001,37(12):746-748.
  • 7Petrovic V,Xydeas C.Cross band pixel selection in multi-resolution image fusion[C]//Proc of SPIE.1999,3719:319-326.
  • 8QU Guihong,ZHANG Dali,YANG Pingfan.Information measure for performance of image fusion[J].Electronics Letters,2002,38(7):313-315.
  • 9Zhang Z,Blum R S.A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J].Proceedings of the IEEE,1999,87(8):1315-1326.
  • 10Burt P J,Kolczynski R J.Enhancement with application to image fusion[C]//Proc 4th Int Conf on Computer Vision.1993:173-182.

共引文献4

同被引文献45

  • 1王蕊,刘双喜,王钦祥,崔嵬,高丽娟,王金星.棉花异性纤维中麻绳与羽毛的分类特征(英文)[J].农业工程学报,2012,28(S2):202-207. 被引量:3
  • 2郏东耀,丁天怀.棉花中异性纤维的多光谱检测[J].清华大学学报(自然科学版),2005,45(2):193-196. 被引量:32
  • 3杨勇,郑崇勋,林盘,潘晨,顾建文.基于改进的模糊C均值聚类图像分割新算法[J].光电子.激光,2005,16(9):1118-1122. 被引量:20
  • 4宋毅,崔平远,居鹤华.一种图像匹配中SSD和NCC算法的改进[J].计算机工程与应用,2006,42(2):42-44. 被引量:29
  • 5WANG GuoJun1,2 & HUI XiaoJing1,31 Institute of Mathematics, Shaanxi Normal University, Xi’an 710062, China,2 Research Center for Science, Xi’an Jiaotong University, Xi’an 710049, China,3 College of Mathematics and Computer Science, Yan’an University, 716000, China.Randomization of classical inference patterns and its application[J].Science in China(Series F),2007,50(6):867-877. 被引量:26
  • 6LI Q,GU Y,QIAN X.Latent-community and multi-kernel learning based image annotation[C]//Proceedings of the 22nd ACM International Comference on Information&Knowledge Management.New York,USA:ACM,2013:1469-1472.
  • 7EVERINGHAM M,GOOL L V,WILLIAMS C K I,et al.The pascal visual object classes(VOC)challenge[J].International journal of computer vision,2010,88(2):303-338.
  • 8ZEILER M D,TAYLOR G W,FERGUS R.Adaptive deconvolutional networks for mid and high level feature learning[C].Proc.2011 IEEE International Conference on Computer Vision.2011:2018-2025.
  • 9PEELEN M V,LI F F,KASTNER S.Neural mechanisms of rapid natural scene categorization in human visual cortex[J].Nature,2009,460:94-97.
  • 10ZHANG D Q,ZHOU Z H,CHEN S C.Semi-supervised dimensionality reduction[C]//Proceeding of the 7th SIAM International Conference on Data Mining.2014:629-634.

引证文献3

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部