期刊文献+

全光增益控制的增益平坦型高功率光纤放大器 被引量:2

High Power All-Optical Gain-Clamped and Gain-Flattened Fiber Amplifier
原文传递
导出
摘要 采用两级放大结构,利用光纤环形镜(FLM)并结合两根光纤光栅(FBG)进行增益平坦和增益控制,搭建了全光增益控制的增益平坦型高功率光纤放大器,实验测试了放大器的输出性能。放大器最大输出功率为1.399 W。在1535~1547nm范围内,增益不平坦度为±0.75dB。研究了信道在小功率和大功率信号输入条件下,放大器的增益控制特性,当信道2的功率在-33.7dBm^-2.5dBm和-14.8dBm^16.4dBm范围内变化时,剩余信道1的增益漂移范围可以分别达到0.04dB和0.06dB。 With the configuration of two-stage amplifying, the high power fiber amplifier with gain clamping and gain flattening is constructed. It makes gain flattened and gain clamped using fiber loop mirror (FLM) combined with two fiber Bragg gratings (FBGs). The output performance of the amplifier is tested, which shows that the maximum output power is 1. g99 W and the gain fluctuation is reduced to 4-0.75 dB in the range from 1535 nm to 1547 nm. Under the conditions of inputing small power and high power signals, the gain control characteristics of amplifier are researched, respectively. As the input power of channel 2 changing from -33.7 dBm to -2.5 dBm or -14.8 dBm to 16.4 dBm, the excursion ranges of channel 1 can be 0.04 dB and 0.06 dB, respectively.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第12期119-124,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61177066) 吉林省科技发展计划(20120761) 长春市科技局国际合作项目(2011105)
关键词 激光器 两级放大 增益控制 增益平坦 波分复用 光纤环形镜 lasers two-stage amplifying gain clamping gain flattening wavelength divistion multiplexing fiber loop mirror
  • 相关文献

参考文献25

二级参考文献107

共引文献86

同被引文献19

  • 1李国玉,窦清影,刘艳格,张昊,张键,袁树忠,董孝义.基于高双折射光纤布拉格光栅的自动增益控制掺铒光纤放大器[J].光学学报,2006,26(9):1308-1312. 被引量:5
  • 2李彤, 张大明. 铒镱共掺聚合物平面光波导放大器的研究[D]. 长春: 吉林大学, 2009. 11-48.
  • 3Ennen H, Schneider J, Pomrenke G, et al.. 1.54 μm luminescence of erbium-implanted III-V semiconductors and silicon[J]. Appl Phys Lett, 1983, 43(10): 943-946.
  • 4Zhou Kejiang, Pan Shuming, Ngo Nam Quoc, et al.. Gain equalization of EDFA using a loop filter with a single polarization controller[J]. Chin Opt Lett, 2012, 10(7): 070604.
  • 5S Singh, R S Kaler. Flat gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system[J]. IEEE Photon Technol Lett, 2013, 25(3): 250-252.
  • 6Zhai Xuesong, Li Jie, Liu Shusen, et al.. Enhancement of 1.53 μm emission band in NaYF4∶Er3+, Yb3+, Ce3+ nanocrystals for polymerbased optical waveguide amplifiers[J]. Opt Mater Express, 2013, 3(2): 270-277.
  • 7Chen Cong, Zhang Dan, Li Tong, et al.. Demonstration of optical gain at 1550 nm in erbium-ytterbium co-doped polymer waveguide amplifier[J]. J Nanosci Nanotechno, 2010, 10(3): 1947-1950.
  • 8Wong W H, Chan K S, Pun E Y B, et al.. Ultraviolet direct printing of rare-earth-doped polymer waveguide amplifiers[J]. Appl Phys Lett, 2005, 87(1): 011103.
  • 9Bo S H, Hu J, Chen Z, et al.. Core-shell LaF3∶Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers[J]. Appl Phys B, 2009, 97(3): 665-669.
  • 10Lei Ka-Long, Chow Cheuk-Fai, Tsang Kwok-Chu, et al.. Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers[J]. J Mater Chem, 2010, 20: 7526–7529.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部