期刊文献+

基于多Agent Q学习的RoboCup局部配合策略 被引量:2

Robo Cup regional cooperative strategy based on multi-Agent Q-learning
下载PDF
导出
摘要 针对Robo Cup(Robot World Cup)中,多Agent之间的配合策略问题,采用了一种局部合作的多Agent Q-学习方法:通过细分球场区域和Agent回报值的方法,加强了Agent之间的协作能力,从而增强了队伍的进攻和防守能力。同时通过约束此算法的使用范围,减少了学习所用的时间,确保了比赛的实时性。最后在仿真2D平台上进行的实验证明,该方法比以前的效果更好,完全符合初期的设计目标。 Because many multi-Agent cooperative problems can hardly be solved in RoboCup, this paper investigates a regional cooperative multi-Agent Q-learning method. Through subdividing the stadium area and rewards of agents, the agents’collaboration ability can be strengthened. As a result, the team’s offensive and defensive abilities are enhanced. At the same time, the agents can spend less time learning via restricting the using range of the algorithm. Consequently, the real-time of the game can be ensured. Finally, the experiment on the platform of the simulation 2D proves that the effect of this method is much better than that of the previous one, and it fully complies with the design of the original goal.
出处 《计算机工程与应用》 CSCD 2014年第23期127-130,共4页 Computer Engineering and Applications
基金 安徽省自然科学基金(No.090412054) 安徽高等学校省级自然科学基金(No.KJ2011Z020)
关键词 随机对策 Q-学习 实时性 局部合作 RoboCup仿真2D 配合策略 stochastic game Q-learning real-time regional cooperation RoboCup simulation 2D cooperative strategy
  • 相关文献

参考文献15

二级参考文献49

共引文献121

同被引文献12

  • 1Andrew I Iachinski.人工战争:基于多Agent的作战仿真[M].张志祥,高春蓉,郭福亮,译.北京:电子工业出版社,2010.
  • 2Brown FB, Nagaya Y. The MCN P5 random number generator[J]. Trans Am Nucl Soc, 2012,87 : 230-232.
  • 3Dudenhoeffer D. Permann MR. Manic MC. AFrame- work for Infrastructure Interdependency Modeling And Analysis[C]//Proceedings of the 38th conference on Winter Simulation. Monterey, California: [s. n. 1, 2006:478-485.
  • 4Chris W. Johnson. Using Evacuation Simulations for Contingency Planning to Enhance the Security and Safe- ty of the 2012 Olympic Venues[J]. Safety Science, 2008,46:302-322.
  • 5Kerstin Eriksson, Allan McConnell. Contingency Plan- ning For Crisis Management: Recipefor Success or Po- litical Fantasy? [J]. Policy and Society-103,2011 : 11- 22.
  • 6Paul M. Torrens. Agent-based Models and the Spatial [J]. Geography Compass, 2010,4(5) : 428-448.
  • 7Ragnar Rosness. A Contingency Model Of Decision- Making Involing Risk Of Accidental Loss[J]. Safety Science, 2009 :807-812.
  • 8Leysia Palen, Sophia Liu. B. Citizen Communications in CrisisAnticipating a Future of ICT-Supported Pub- lic Participation[J]. Emergency Action, 2007~ 727- 736.
  • 9董存祥,王文俊,杨鹏.应急预案体系本体模型(EPSOnto)及应用[J].计算机工程与应用,2010,46(10):235-238. 被引量:21
  • 10侯艳丽.基于支持向量机和Q学习的移动机器人导航[J].计算机工程与应用,2011,47(23):242-244. 被引量:2

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部