期刊文献+

结合实体链接与实体聚类的命名实体消歧 被引量:13

An Named Entity Disambiguation Algorithm Combining Entity Linking and Entity Clustering
原文传递
导出
摘要 为了消除文本中命名实体的歧义,提出了一种结合实体链接与实体聚类的命名实体消歧算法,结合2种方法,可弥补单独使用其中一种方法的局限.该算法在背景文本中将待消歧实体指称扩充为全称,使用扩充后的全称在英文维基百科知识库中生成候选实体集合,同时提取多种特征对候选实体集合进行排序,对于知识库中没有对应实体的指称使用聚类消歧.实验结果表明,该算法在KBP2011评测数据上的F值为0.746,在KBP2012评测数据上的F值为0.670. In order to eliminate the ambiguity of named entities in the documents, a named entity disam- biguation algorithm combining entity linking and entity clustering is proposed, and the proposed algorithm combines two methods to compensate for the limitations of only using one of the methods. The proposed algorithm expands the mentions in the background document firstly, and generates candidates in the Eng- lish Wikipedia knowledge base for expansions secondly, then extracts a variety of features to rank candi- dates, lastly uses clustering to disambiguate the mentions which has none candidates in the knowledge base. The experimental results show that, in the proposed algorithm, the F measure in KBP2011 data set is 0. 746 and the F measure in KBP2012 data set is 0. 670.
作者 谭咏梅 杨雪
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2014年第5期36-40,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61273365)
关键词 命名实体消歧 实体链接 聚类 named entity disambiguation entity linking clustering
  • 相关文献

参考文献8

  • 1赵军,刘康,周光有,蔡黎.开放式文本信息抽取[J].中文信息学报,2011,25(6):98-110. 被引量:62
  • 2Bunescu R C, Pasca M. Using encyclopedic knowledge for named entity disambiguation [ C]//J Proceedings of the Conference of the European Chapter of the Association for Computational Linguistics, 2006, 6: 9-16.
  • 3Cucerzan S. Large-scale named entity disambiguation based on wikipedia data[ C ]///Proceedings of the Confer- ence on Empirical Methods in Natural Language Process- ing and Computational Natural Language Learning, 2007,7 : 708-716.
  • 4Monahan S, Lehmann J, Nyberg T, et al. Cross-lingual cross-document coreference with entity linking [ C ]//Pro- ceedings of the Text Analysis Conference, 2011.
  • 5Tan Yongmei, Wang Zhichao, Yang Xue, et al. BUPT- Team participation at TAC 2012 knowledge base popula- tion[ C]//Proceedings of the Text Analysis Conference, 2012.
  • 6Hachey B, Radford W, Nothman J, et al. Evaluating en- tity linking with wikipedia [ J ]. Artificial intelligence, 2013, 194: 130-150.
  • 7史天艺,李明禄.基于维基百科的自动词义消歧方法[J].计算机工程,2009,35(18):62-64. 被引量:12
  • 8杜婧君,陆蓓,谌志群.基于中文维基百科的命名实体消歧方法[J].杭州电子科技大学学报(自然科学版),2012,32(6):57-60. 被引量:3

二级参考文献75

  • 1Galley M, McKeown K, Improving Word Sense Disambiguation in Lexical Chaining[C]//Proc. of the 18th International Joint Conference on Artificial Intelligence. Acapulco, Mexico: [s. n.], 2003: 1486-1488.
  • 2Yarowsky D. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods[C]//Proc. of the 33rd Annual Meeting of the Association for Computational Linguistics. Cambridge, Massachusetts, USA: [s. n.], 1995: 189-196.
  • 3Gey F C. Inferring Probability of Relevance Using the Method of Logistic Regression[C]//Proc. of the 17th International Conference of the ACM-SIGIR'94. [S. l.]: Springer-Verlag, 1994: 222-231.
  • 4Remy M. Wikipedia: The Free Encyclopedia[J]. Online Information Review, 2002, 26(6): 434-435.
  • 5Denoyer L, Gallinari E The Wikipedia XML Corpus[J]. SIGIR Forum, 2006, 40(1): 64-69.
  • 6Ralph Grishman. 1997. Information Extraction : Tech- niques and Challenges[R]. New York: New York U-niversity, 1997.
  • 7Ralph Grishman, Beth Sundheim. Message Under- standing Conference-6: A Brief History[C]//Proceed- ings of COLING, 1996.
  • 8http://www, itl. nist. gov/iad/mig/tests/ace/[OL].
  • 9http ://www. nist. gov/tac/[OL].
  • 10Martina Naughton, N. Kushmerichand J. Carthy. Event Extraction from Hetergeneous News Sources [C]//Proceedings of AAAI, 2006.

共引文献74

同被引文献98

  • 1范鹏程,沈英汉,许洪波,程学旗,廖华明.融合实体知识描述的实体联合消歧方法[J].中文信息学报,2020(7):42-49. 被引量:5
  • 2俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:160
  • 3Tan Yongmei,Wang Zhichao, Yang Xue, et al. BUPT-Team participation at TAC 2012 knowledge base pupula-tion[ C] //Proceedings of the TAC. Gaithersburg: NIST,2012.
  • 4Ji Heng, Nothman J, Hachey B. Overview of TAC KBP2014 entity discovery and linking tasks[ C] //Proceedingsof NIST TAC 2014. Gaithersburg: NIST, 2014.
  • 5Cucerzan S. TAC entity linking by performing full-docu-ment entity extraction and disambiguation [C] // Proceed-ings of the TAC. Gaithersburg: NIST, 2011.
  • 6Monahan S, Lehmann J, Nyberg T, et al. Cross-lingualcross document coreference with entity linking [ C ] // Pro-ceedings of the TAC. Gaithersburg: NISTT 2011.
  • 7Cao Zhe,Li Hang. Learning to rank : from pairwise ap-proach to listwise approach [ C ] // Proceedings of the 24,hICML. Oregon: ACM, 2007 : 129-136.
  • 8杨雪.基于维基百科的命名实体消歧的研究与实现[D].北京:北京邮电大学,2013.
  • 9Zhang Wei, Su Jian, Chen Bin, et al. I2R-NUS-MSRAat TAC 2011 : entity linking [ C] // Proceedings of theTAC. Gaithersburg: NIST, 2011.
  • 10Yang Xue, Wang Rui, Li Maolin, et al. BUPTTeamparticipation at TAC 2013 entity linking [ C ] // Proceed-ings of the TAC. Gaithersburg: NIST, 2013.

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部