期刊文献+

自适应反演控制在一类非线性系统中的应用 被引量:3

Adaptive backstepping-based control and application research on uncertain nonlinear systems
下载PDF
导出
摘要 针对一类不确定性上界未知的非线性系统,提出一种自适应反演控制方法.建立了一类带有外界扰动的不确定非线性系统的数学模型.将复杂的非线性系统分解成不超过系统阶数的子系统,采用反演思想,并用自适应更新律对非线性系统不确定性上界进行估计,设计了自适应反演控制器并证明了李亚普诺夫稳定性.采用所设计的控制律使非线性系统的输出能跟踪期望的轨迹,具有一定的鲁棒性.用数值仿真验证了所设计控制器的良好跟踪性能. An adaptive backstepping-based control method is proposed for a class of uncertain nonlinear systems.Firstly,the model of nonlinear systems is developed based on deep space detection.The complex nonlinear system is decomposed into subsystems whose order numbers are less than the original system.The whole control law is designed through regression method. An adaptive backstepping-based control is proposed while the upper bound of the uncertanties is estimated,and Lyapunov stable is proved.The outputs of uncertain nonlinear systems can fast and accurate track the expected trajectories through the proposed control algorithms.Numerical simulations are included to illustrate the spacecraft performance obtained using the proposed controller.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期66-71,共6页 Journal of Northeast Normal University(Natural Science Edition)
基金 吉林省科技发展计划项目(120130169)
关键词 不确定非线性系统 反演控制 自适应控制 uncertain nonlinear system backstepping control adaptive control
  • 相关文献

参考文献10

  • 1DUNHAM D W.FARQUHAR R W,MCADAMS J V,et al. Implementation of the first asteroid landing[J]. Icarus,2002,159(2):433-438.
  • 2KUBOTA T, HASHIMOTO T, SAWAI S,et al. An autonomous navigation and guidance system for MUSES-C asteroidlanding[J]. Acta Astronautica,2003.52(2) : 125-131.
  • 3HAJIME YANO T. KUBOTA,MIYAMOTO H,et al. Touchdown of the hayabusa spacecraft at the muses sea on itokawa[J]. Science,2006,312: 1350-1353.
  • 4SCHEERES D J. Orbital mechanics about small bodies[J]. Acta Astronautica,2012,72:1-14.
  • 5崔祜涛,史雪岩,崔平远,李傲霜.软着陆小行星的制导与控制规律研究[J].飞行力学,2002,20(2):35-38. 被引量:2
  • 6李爽,崔平远.着陆小行星的滑模变结构控制[J].宇航学报,2005,26(6):808-812. 被引量:7
  • 7WANG Y,XU S. Attitude stability of a spacecraft on a stationary orbit around an asteroid subjected to gravity gradient torque[J]. Celestial Mechanics and Dynamical Astronomy,2013*115(4) :333-352.
  • 8MISRA A K, PANCHENKO Y. Attitude dynamics of satellites orbiting an asteroid [J]. The Journal of the AstronauticalSciences,2006,54(3/4) :369-381.
  • 9章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,2006:15-17.
  • 10刘林,等.航天动力学引论[M].南京:南京大学出版社,2005.

二级参考文献13

  • 1赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社,1997..
  • 2Mclnnes C R and Radice G. Line-of-sight guidance for descent to a minor solar system body [J]. Journal of Guidance, Control and Dynamics, 1996, 19(3) :740 - 742.
  • 3Misu T, Hashimoto T and Ninomiya K. Optical guidance for autonomous landing of spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems. 1999, 35(2) :459 - 472.
  • 4Emilio Frazzoli. Guidance laws for asteroid rendez vous[A]. In:44th Congress of the International Astronautical Federation, October 16-22, 1993, Graz, Austria. ST-93-W. 2. 861.
  • 5Guetman M. Power limited soft landing on an asteroid [J]. Journal of Guidance, Control and Dynamics, 1994, 17(1):15-20.
  • 6Lafontaine J de. Autonomous spacecraft navigation and control for comet landing [J]. Journal of Guidance, Control and Dynamics,1992, 15(3) :567 - 576.
  • 7Dawson S, Potterveld C W, Konigsmann H and Early L. Autonomous controlled landing on cometary bodies[A]. AAS 98- 185.
  • 8Utlon. VI, Variable structure systems wth sliding modes-survey paper[J].IEEE Transaction on Automatic Control, 1977, AC- 22(2):212 - 222.
  • 9Terui F. Position and attitude control of a spacecraftby sliding mode control[A]. In: Proceedings of the American Control Conference[C]. 1998,1:217-221.
  • 10Park, Jong-Uk, Choi, Kyu-Hong, Lee, Sanguk. Orbital rendezvous using two-step sliding mode control[J]. Aerospace Science and Tech-nology, 1999, 3(4) :239- 245.

共引文献41

同被引文献38

  • 1刘正华,吴云洁,尔联洁,吴森堂.自适应反演滑模转台鲁棒控制器设计[J].系统仿真学报,2006,18(z2):894-896. 被引量:9
  • 2闫振亚.复杂非线性波的构造性理论及其应用[M].北京:科学出版社,2002.
  • 3HE XING,YU JUNZHI,HUANG TINGWEN'et al.Neural networks for solving nash equilibrium problem in application of multiuser power control [J].Neural Networks,2014,57(9):73-78.
  • 4ZHANG FUCHEN?ZHANG GUANGYUN,LIN DA,et al.New estimate the bounds for the generalized Lorenz system [J]. Mathematical Methods in the Applied Sciences,2015,38:1696-1704.
  • 5LEONOV G A,BUNIN A,KOKSCH N.Attractor localization of the Lorenz system[J],Zeitschrift fur Angewandte Mathematik und Mechanik,1987,67:649-656.
  • 6ZHANG FUCHEN,MU CHUNLAI,LI XIAOWU.On the boundness of some solutions of the Lii system [J].International Journal of Bifurcation and Chaos,2012,22(1):1-5.
  • 7LI XIANFENG,CHLOUVERAKIS KONSTANTINOS E,XU DONGLIANG.Nonlinear dynamics and circuit realization of a new chaotic flow a variant of Lorenz,Chen and Lu[J].Nonlinear Analysis Real World Applications,2009,10:2357-2368.
  • 8WANG GUIHE,JIAN JIGUI.Globaly exponentially attractive set and synchronization controlling of a new chaotic system [C]//Qingdao : Proceedings of the Ninth International Conference on Machine Learning and Cybernetics,2010,7:11-14.
  • 9Kanellakopoulos I,Kokotovic P V,Morse A S.Systematic design of adaptive controllers for feedback linearizableystems[J].IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
  • 10Polycarpou M M,Ioannou P A.A Robust adaptive nonlinear control design[J].Automatic,1996,32(3):423-42.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部