期刊文献+

一种软件测试算法的改进及对比实验 被引量:3

A Software Testing Algorithm Improvements and Comparative Experiments
下载PDF
导出
摘要 为了进一步优化软件测试的时间与效率,设计了二进制编码的微粒群优化的算法改进,构建了算法的原理与步骤,利用VC++6.0平台进行了4种不同结构的基准程序软件测试实验。结果表明:与遗传算法相比,改进设计算法在较大数据范围情况下运行时间更短;设计方法只需要遗传方法约五分之四的进化代数和进化时间就能完成覆盖目标路径的数据。上述研究结果对于计算机软件缩短开发时间具有明显的实际意义。 In order to further optimize the time and efficiency of software testing, a particle swarm optimization algorithm is designed for binary coding improvements, construction of the principles and steps of the algorithm, using VC ++ 6.0 platform for the four kinds of different structural benchmark test software experiment. The results showed that : compared with the genetic algorithm to improve the design of algorithms in the case of a large range of data shorter running time; design method requires only about four-fifths of the genetic and evolutionary time evolu- gebra to complete coverage of the target path of the data. These results have obvious practical implications for ter software to shorten development time.
作者 张伟杰
出处 《科学技术与工程》 北大核心 2014年第35期245-248,共4页 Science Technology and Engineering
关键词 软件测试 微粒群优化 时间 VC++6.0平台 software testing particle swarm optimization time VC ++ 6, 0 platform
  • 相关文献

参考文献9

二级参考文献50

  • 1陈国初,俞金寿.增强型微粒群优化算法及其在软测量中的应用[J].控制与决策,2005,20(4):377-381. 被引量:31
  • 2叶媛媛,闵春平,沈林成,常文森.基于VORONOI图的无人机空域任务规划方法研究[J].系统仿真学报,2005,17(6):1353-1355. 被引量:45
  • 3[1]Huang Y C, Yang H T, Huang C L. Solving the capacitor placement problem in a radial distribution system using tabu search approach [J]. IEEE Trans on Power Systems, 1996, 11(4):1868-1873.
  • 4[2]Kalyuzhny A, Levitin G, Elmakis D, et al. System approach to shunt capacitor allocation in radial distribution systems [J]. Electric Power Systems Research, 2000, 56(1):51-60.
  • 5[3]Sundhararajan S, Pahwa A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm [J]. IEEE Trans on Power Systems, 1994, 9(3): 1499-1506.
  • 6[4]Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1995.
  • 7[5]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. Proceedings of Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 8[6]Yoshida H, Kawata K, Fukuyama Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment [J]. IEEE Trans on Power Systems, 2000, 15(4):1232-1239.
  • 9[7]Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]. Proc. 1999 ICEC, Washington DC, 1999.
  • 10[8]Eberhart R, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA, USA, 2000.

共引文献98

同被引文献14

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部