期刊文献+

毛竹全长LTR逆转座子的鉴定和进化分析 被引量:1

Identification and Evolutionary Study of Full-length LTR-retrotransposons in Moso Bamboo Genome
原文传递
导出
摘要 转座子和逆转座子的大量插入,是高等植物基因组进化的重要动力。作为植物基因组研究热点的禾本科植物之一,毛竹基因组大小约为2 Gb,60%为重复序列,长末端重复序列型逆转座子(LTR逆转座子)则占全部重复序列的一半以上,然而目前对毛竹基因组中LTR逆转座子及进化情况知之甚少。本研究利用已发表的毛竹基因组序列,首次通过大数据筛查预测获得9 436个平均长度10.3 kb的全长LTR逆转座子。通过分析,我们估算出毛竹LTR逆转座子插入基因组的时间主要分布于200~500万年前,晚于毛竹基因组四倍化的时间。研究还发现了29个位于全长LTR逆转座子内部、有转录组序列支持的蛋白编码基因,这些毛竹基因均不符合所在基因组区段的毛竹-水稻基因共线性关系,且位于LTR逆转座子内部的基因与存在于染色体其他位置的同源基因在表达模式上有着较大差异。本研究首次尝试从LTR逆转座子的角度探索毛竹基因的进化历程,也为今后的植物基因组研究提供了重要的基础数据。 Accumulation of transposable elements, including transposons and retrotransposons, is the primary contributor to genome evolution in higher plants. As a grass species, moso bamboo has a 2 Gb genome in size and 60% is covered by repetitive sequences. Of these repetitive sequences, over 50% is long terminal repeat retrotran- sposons (LTR-retrotransposons), however, we know little about the role of the LTR-retrotransposons in evolution of moso bamboo genome. In this study, a total of 9,436 full-length LTR-retrotransposons with an average length of 10.3 kb were predicted by genome-wide data processing in moso bamboo. The estimated insertion ages of the LTR-retrotransposons are mainly at 2 to 5 million years ago, which is later than tetraploidization of the moso bamboo genome. Twenty-nine protein-coding genes were revealed to be located inside the full-length LTR-retro- transposons. Each of them is supported by RNA-seq data and does not show gene collinearity in the corresponding bamboo-rice-synteny region. Different gene expression patterns are observed between the gene inside the LTR-retrotransposon and its homolog outside it. The present study of moso bamboo LTR-retrotransposons provides a potential mechanism of genes evolution, The data set of the identified full-length LTR-retrotransposons will be the fundamental data source for genome research oflalants.
出处 《分子植物育种》 CAS CSCD 北大核心 2014年第6期1265-1274,共10页 Molecular Plant Breeding
基金 国际竹藤中心基本科研业务费专项资金(1632013008 1632011004 1632012007) 国家自然基金(31470025 31370631) 国家863项目(2013AA 102607-4)共同资助
关键词 毛竹 转座因子 长末端重复序列型逆转座子 进化 基因组 Moso bamboo, Transposable elements, LTR-retrotransposons, Evolution, Genome
  • 相关文献

参考文献24

  • 1Casacuberta E., Casacuberta J.M., Puigdom~nech P., and Mon- fort A., 1998, Presence of miniature inverted-repeat trans- posable elements (MITEs) in the genome ofArabidopsis tha- liana: characterisation of the Emigrant family of elements, Plant J., 16(1): 79-85.
  • 2Casacuberta J.M., and Santiago N., 2003, Plant LTR-retrotrans- posons and MITEs: control of transposition and impact on the evolution of plant genes and genomes, Gene, 311: 1-11.
  • 3陈建军,王瑛.植物基因组大小进化的研究进展[J].遗传,2009,31(5):464-470. 被引量:36
  • 4Ellinghaus D., Kurtz S., and Willhoeft U., 2008, LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons, BMC Bioinformatics, 9:18.
  • 5Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., Mistry J., Sonnhammer E.L., Tare J., and Punta M., 2014, The Pfam protein families database, Nucleic Acids Res., 42:222-230.
  • 6Gant B.S., Morton B.R., McCaig B.C., and Clegg M.T., 1996, Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh paral- lel rate differences at the plastid gene rbcL, Proc. Natl. A- cad. Sci. USA, 93(19): 10274-10279.
  • 7International Brachypodium Initiative, 2010, Genome sequencing and analysis of the model grass brachypodium distachyon, Nature, 463(7282): 763-768.
  • 8Jiang N., Bao Z., Zhang X., Eddy S.R., and Wessler S.R., 2004,Pack-MULE transposable elements mediate gene evolution in plants, Nature, 431(7008): 569-573.
  • 9Kashkush K., Feldman M., and Levy A.A., 2003, Transcriptional activation of retrotransposons alters the expression of adja- cent genes in wheat, Nat. Genet., 33(1): 102-106.
  • 10Kazazian H.H.J., 2004, Mobile elements: drivers of genome evo- lution, Science, 303(5664): 1626-1632.

二级参考文献77

  • 1Pozzoli U, Menozzi G, Comi GP, Cagliani R, Bresolin N Sironi M. Intron size in mammals: complexity comes to terms with economy. Trends Genet, 2007, 23(1): 20-24.
  • 2Sironi M, Menozzi G, Comi GP, Cereda M, Cagliani R, Bresolin N, Pozzoli U. Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biology, 2006, 7(12): R120.
  • 3Ren XY, Vorst O, Fiers MW, Stiekema WJ, Nap JP. In plants, highly expressed genes are the least compact. Trends Genet, 2006, 22(10): 528-532.
  • 4Wendel JF, Cronn RC, Johnston JS, Price HJ. Feast and famine in plant genomes. Genetica, 2002, 115(1): 37-47.
  • 5Petrov DA. Mutational equilibrium model of genome size evolution. Theor Popul Biol, 2002, 61(4): 531-544.
  • 6Gregory TR. Insertion-deletion biases and the evolution of genome size. Gene, 2004, 324: 15-34.
  • 7Hawkins JS, Grover CE, Wendel JR Repeated big bangs and the expanding universe: Directionality in plant genome size evolution. Plant Sci, 2008, 174(6): 557-562.
  • 8Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 2004, 16(7): 1667-1678.
  • 9Wang X, Shi X, Hao B, Ge S, Luo J. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol, 2005, 165(3): 937-946.
  • 10SanMiguel P, Bennetzen JL. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot, 1998 82(Suppl. A): 37-44.

共引文献35

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部