期刊文献+

铝电解槽改进型钢棒和绝缘挡板对铝液中水平电流的优化 被引量:1

Optimization of horizontal current in metal pad by using advanced collector bars and insulation boards in aluminum reduction cell
下载PDF
导出
摘要 为了减小传统铝电解槽内铝液中存在的较大水平电流,进一步提高铝电解槽电流效率,提出一种改进型阴极钢棒和在铝液中增加绝缘挡板的方案。以有限元软件ANSYS为平台,对175kA预焙铝电解槽电场进行模拟分析,在此基础上通过改变阴极钢棒形状和在铝液层中增加绝缘挡板的方式,探讨不同方案对铝液层水平电流的优化作用。研究结果表明:改进型阴极钢棒可使阳极炭块下铝液中y向水平电流密度的最大值和平均值明显减小,绝缘挡板能有效抑制电流向阳极炭块侧部偏移,而通过改进型钢棒和绝缘挡板的结合,不仅能将铝液层电流控制在阳极炭块下,而且水平电流密度的大小和分布也能得到有效的控制,为铝电解实际生产提供理论依据。 Based on the target of reducing the large horizontal current in metal pad of aluminum reduction cells and improving current efficiency of aluminum reduction cells further more, a kind of advanced collector bars and insulation boards was improved. The software ANSYS was used to calculate the current distribution in the 175 kA prebake aluminum reduction cells. The effect of different conditions on current distribution in metal pad of aluminum reduction cells was talked about by changing the shape of collector bars and installing insulation boards in metal pad. The results show that advanced collector bars can significantly reduce the maximum and average values of horizontal current density along y axis in the metal pad under anode carbon block. Insulation boards can effectively restrain the current offset to the side of the anode carbon block. By combining advanced collector bars with insulation boards, it can not only control the current in metal pad under anode carbon block but the value and distribution of horizontal current density can also be controlled effectively. It provides theory basis for the actual production of aluminum reduction.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第10期3351-3357,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51004115)~~
关键词 铝电解槽 阴极钢棒 绝缘挡板 水平电流 优化 aluminum reduction cells collector bar insulation board horizontal current optimization
  • 相关文献

参考文献16

  • 1李相鹏,李劼,赖延清,赵恒勤,刘业翔.Mathematical simulation of gas induced bath flow in drained aluminum reduction cell[J].中国有色金属学会会刊:英文版,2004,14(6):1221-1226. 被引量:7
  • 2李劼,徐宇杰,刘伟,赖延清.基于波动模态耦合的铝电解槽磁流体稳定性傅立叶级数法分析[J].计算力学学报,2010,27(2):213-217. 被引量:6
  • 3田应甫.大型预焙铝电解槽生产实践[M].长沙:中南工业大学出版社,2005,189.
  • 4Lindsay R I, Davidson P A. Stability of interracial waves in aluminum reduction cell[J]~ J Fluid Mech, 1998, 362: 327-331.
  • 5Bojarevics V, Romerio M V. Long waves instability of liquid metal-electrolyte interface in aluminum electrolysis cells: A generalization of Sele's criteria[J]. European Journal of Mechanics B, 1994, 13: 33-56.
  • 6Ziegler D P, Ruan Y M. Busbar arrangement optimization for end cells[C]//Light Metals. Warrendale, PA, USA: TMS, 2009: 535-538.
  • 7刘业翔,梁学民,李劼,张红亮,徐宇杰,丁凤其,邹忠.底部出电型铝电解槽母线结构与电磁流场仿真优化[J].中国有色金属学报,2011,21(7):1688-1695. 被引量:7
  • 8Moreau R J, Ziegler D. Stability of aluminium cells: A new approach[C]//Light Metals. New Orleans, LA: TMS, 1986: 359-364.
  • 9Arita Y, Ikeuchi H. Numerical calculation of bath and metal convection patterns and their interface profile in A1 reduction cells[C]//Light Metals. Warrendale, PA, USA: TMS, 1981: 357-363.
  • 10Robl R F. Metal flow dependence on ledging in Hall-Heroult cells[C]//Light Metals. Warrendale, PA, USA: TMS, 1983: 449-454.

二级参考文献42

  • 1李相鹏,李劼,赖延清,赵恒勤,刘业翔.Mathematical simulation of gas induced bath flow in drained aluminum reduction cell[J].中国有色金属学会会刊:英文版,2004,14(6):1221-1226. 被引量:7
  • 2J. Li,W. Liu,Y.Q. Lai,Q.Y. Li,Y.X. Liu.COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD[J].Acta Metallurgica Sinica(English Letters),2006,19(2):105-116. 被引量:10
  • 3[1]Brown G D, Hardie G J, Shaw R W, et al. TiB2 coated aluminium reduction cells: status and future direction of coated cell in comalco [A]. Welch B. Aluminium Smelting Conference [C]. Queenstown, New Zealand: Al Smelting Workshop, 1998, 26: 499-508.
  • 4[2]Wahnsiedler W E. Hydrodynamic modeling of commercial hall-heroult cells [J]. Light Metals, 1988:269 - 273.
  • 5[3]Stedman I G, Houston G J, Shaw R W, et al. Aluminum Smelting Cells [P]. US 5043047, 1991.
  • 6[4]Vittorio de Nora. Cell for Aluminium Electrowinning Employing a Cathode Cell Bottom Made of Carbon Blocks which have Parallel Channels Therein [P]. US 5683559, 1997.
  • 7[5]Solheim A, Johansen S T, Rolseth S, et al. Gas driven flow in hall-heroult cells [J]. Light Metals, 1989:245 - 252.
  • 8[6]Purdie J M, Bilek M, Taylor M P, et al. Impact of anode gas evolution on electrolyte flow and mixing in aluminum electrowinning cells [J]. Light Metals,1993: 355- 360.
  • 9[7]Dernedde E. Gas induced circulation in an aluminum reduction cell [J]. Light Metals, 1975: 111-122.
  • 10[8]Chessonis D C, Lacamera A F. The influence of gasdriven circulation on alumina distribution and interface motion in a hall-heroult cell [C]. Light Metals, 1990:211 - 219.

共引文献29

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部