期刊文献+

Cu_2ZnSnS_4薄膜的制备及其表征 被引量:2

Preparation and characterization of Cu_2ZnSnS_4 thin films by magnetron sputtering
下载PDF
导出
摘要 采用Cu-Zn-Sn三元合金靶,以直流反应磁控溅射原位生长的技术制备Cu2ZnSnS4(CZTS)薄膜材料。采用X线能量色散谱仪、扫描电镜、X线衍射仪、拉曼光谱、紫外可见分光光度计和霍尔效应测试系统对薄膜进行表征。研究结果表明:原位生长的CZTS薄膜的成分呈富铜贫锌,具有均质、致密和平整的形貌,且由贯穿整个薄膜厚度的柱状颗粒组成;薄膜在(112)面呈现出明显的择优取向,均为P型材料且具有器件级载流子浓度;随着溅射功率的升高,薄膜的形貌、结晶性能、电学性质均得到一定程度改善。 Cu2ZnSnS4(CZTS) thin films were produced by reactive magnetron technique using a Cu-Zn-Sn alloy target,and they were characterized by EDS, XRD, SEM, Raman spectrum, optical transmittance and electronic measurement.The results show that the grown films show homogeneous, compact surface morphology, and consist of large columnar grains throughout thickness. The grown films exhibit strong preferential orientation along(112) plane, the conduction type of the CZTS films is p-type and the carrier concentration is comparable with values for device quality. The morphology, crystallization properties and electrical properties of the thin film are improved with the increase of sputtering power.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第11期3740-3745,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金青年科学基金资助项目(51205214) 中央高校基本科研业务费青年助推基金资助项目(2012QNZT022) 中南大学中央高校基本科研业务费专项资金资助资助(2013zzts027)~~
关键词 Cu2ZnSnS4 反应磁控溅射 合金靶 光吸收层 太阳电池 Cu2ZnSnS4 reactive magnetron alloy target absorbing layer solar cell
  • 相关文献

参考文献22

  • 1Mitzi D B, Gunawan O, Todorov T K, et al. The path towards a high-performance solution-processed kesterite solar cell[J]. Sol Energ Mat Sol C, 2011, 95(6): 1421-1436.
  • 2Ahmed S, Reuter K B, Gunawan O, et al. A high efficiency electrodeposited Cu2ZnSnS4 solar cell[J]. Advanced Energy Materials, 2012, 2(2): 253-259.
  • 3Todorov T K, Tang J, Bag S, et al. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells[J]. Advanced Energy Materials, 2012, 3(1 ): 34-38.
  • 4Sun L, He J, Chen Y, et al. Comparative study on Cu2ZnSnS4 thin films deposited by sputtering and pulsed laser deposition from a single quaternary sulfide target[J]. Journal of Crystal Growth, 2012, 361: 147-151.
  • 5Araki H, Mikaduki A, Kubo Y, et al. Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers[J]. Thin Solid Films, 2008, 517(4): 1457-1460.
  • 6Chan C P, Lam H, Wong K Y, et al. Electrodeposition of Cu2ZnSnS4 thin films using ionic liquids[J]. Materials Research Society, 2009: 1123(3): 105-109.
  • 7Liu Q H, Zhao Z C, Lin Y H, et al. Alloyed (ZnS)(x)(Cu2SnS3)o-x) and (CulnS2)(x)(Cu2SnS3)o-x) nanocrystals with arbitrary composition and broad tunable band gaps[J]. Chemical Communications, 2011, 47(3): 964-966.
  • 8Su Z H, Yah C, Sun K W, et al. Preparation of Cu2ZnSnSa thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method[J]. Applied Surface Science, 2012, 258(19): 7678-7682.
  • 9Leclmer R, Jost S, Palm J, et al. Cu2ZnSn(S,Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors[J]. Thin Solid Films, 2012, 535(1): 5-9.
  • 10Liu F Y, Li Y, Zhang K, et al. In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering[J]. Sol Energ Mat Sol C, 2010, 94(12): 2431-2434.

二级参考文献3

共引文献10

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部