期刊文献+

具有量化反馈的顾前顾后型车辆跟随控制 被引量:1

Vehicle following control with quantization feedback by using front and back information
下载PDF
导出
摘要 针对一类考虑前后相邻车辆信息的顾前顾后型车辆跟随系统,研究量化反馈下的自动纵向跟随控制问题。假定每个跟随车辆通过无线网络获得前后相邻车辆及领头车辆的状态信息,并且信息在对数量化器传输下存在量化误差。基于车辆非线性纵向动力学耦合模型,采用固定距离跟随策略,应用向量Lyapunov函数方法得出的非线性关联大系统群指数稳定性判据,将量化误差处理为不确定系统状态,给出量化反馈信号影响下的滑模控制律,并设计满足车队群稳定性的控制器参数。仿真结果表明:设计的车辆纵向跟随控制器对量化误差产生的影响进行了有效补偿,与不考虑量化误差干扰设计的控制器相比,本控制器能够显著提高车辆跟随误差的收敛速度。 For a class of vehicle following system using front and back information, the problem of longitudinal following control of vehicles in platoon with quantization feedback was studied. Every following vehicle in platoon was supposed to get the information with logarithmic quantization errors of the leading vehicle, the predecessor and the follower via wireless network. Based on the nonlinear longitudinal dynamics coupled model of vehicles in platoon, the quantization errors were conducted as uncertain system states and an exponential string stability criterion of a nonlinear interconnected complex system solved by a method applying vector Lyapunov function was used. A sliding mode control law with quantization feedback was designed by using constant spacing safety policy. And control parameters which ensure string stability of this system were given. The simulation result shows that the compensation generated by this controller is effective for quantization errors. And compared with the controller when quantization errors are not taken into consideration, this controller obtains a higher convergence rate of vehicle following errors.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第11期4068-4074,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(11172247 60974132) 西南交通大学博士研究生创新基金资助项目(2013) 中央高校基本科研业务费专项资金资助(2013)~~
关键词 车辆跟随系统 滑模控制 向量Lyapunov函数 量化误差 vehicle following system sliding mode control vector Lyapunov function quantization error
  • 相关文献

参考文献7

二级参考文献85

  • 1熊烈强,王富,李杰.考虑前后车速度关系的车辆跟驰模型[J].华中科技大学学报(自然科学版),2005,33(9):87-90. 被引量:7
  • 2张继业,舒仲周.大系统渐近稳定的向量V函数法[J].控制理论与应用,1996,13(3):386-390. 被引量:2
  • 3Siljak D D. Large-Scale Dynamic Systems Stability and Structure. North-Holland: Amstrerdam, 1978.
  • 4Davison E J, Tripathi N. The optimal decentralized control of a large power system: load and frequence control. IEEE Transactions on Automatic Control, 1978, 23(2): 312-325.
  • 5Ei-Sayed M L, Krishnaprasad P S. Homogenous interconnected systems: an example. IEEE Transactions on Automatic Control, 1981, 26(4): 894-901.
  • 6Ozguner U, Barbieri E. Decentralized control of a class of distributed parameter systems. In: Proceedings of the IEEE Conference on Decision and Control. Florida, USA: IEEE, 1985. 932-935.
  • 7Melzer S M, Kuo B C. Optimal regulation of systems described by a countably infinite number of objects. Automatica, 1971, 7(3): 359-366.
  • 8Caudill R J, Garravd W L. Vehicle-follower longitudinal control for automated transit vehicles. Journal of Dynamic Systems, Measurement, and Control, 1977, 99(4): 241-248.
  • 9Levine W, Athans M. On the optimal error regulation of a string of moving vehicles. IEEE Transactions on Automatic Control, 1966, 11(3): 355-361.
  • 10Barbieri E. Stability analysis of a class of interconnected systems. Journal of Dynamic Systems, Measurement, and Control, 1993, 115(3): 546-551.

共引文献37

同被引文献7

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部