期刊文献+

Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis 被引量:4

Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis
原文传递
导出
摘要 Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPKIO has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPKIO is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpklO mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPKIO expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpklO mutant phenotype. These results suggest that the AtMKK2-AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency. Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPKIO has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPKIO is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpklO mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPKIO expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpklO mutant phenotype. These results suggest that the AtMKK2-AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency.
出处 《Molecular Plant》 SCIE CAS CSCD 2014年第11期1637-1652,共16页 分子植物(英文版)
关键词 Arabidopsis MAP kinase leaf development polar auxin transport leaf venation pattern. Arabidopsis MAP kinase leaf development polar auxin transport leaf venation pattern.
  • 相关文献

参考文献1

共引文献28

同被引文献14

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部