期刊文献+

Quantum McKay Correspondence for Disc Invariants of Toric Calabi–Yau 3-orbifolds

Quantum McKay Correspondence for Disc Invariants of Toric Calabi–Yau 3-orbifolds
原文传递
导出
摘要 We announce a result on quantum McKay correspondence for disc invariants of outer legs in toric Calabi-Yau 3-orbifolds, and illustrate our method in a special example [C^3/Z5(1, 1, 3)]. We announce a result on quantum McKay correspondence for disc invariants of outer legs in toric Calabi-Yau 3-orbifolds, and illustrate our method in a special example [C^3/Z5(1, 1, 3)].
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第1期29-34,共6页 数学学报(英文版)
基金 partially supported by China Scholarship Council partially supported by NSFC(Grant No.11171174)
关键词 Quantum McKay correspondence disc invariants open mirror symmetry Quantum McKay correspondence, disc invariants, open mirror symmetry
  • 相关文献

参考文献28

  • 1Aganagic, M., Klemm, A., Marifio, M., et al.: The topological vertex. Comm. Math. Phys., 254(2), 425-478 (2005).
  • 2Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A, 57(1 2), 1-28.(2002).
  • 3Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs, preprint, hep- th/0012041.
  • 4Brini, A., Cavalieri, R.: Open orbifold Gromov Witten invariants of [Ca/Zn]: localization and mirror symmetry. Seleeta Math. (N.S.), 17(4), 879-933 (2011).
  • 5Brini, A., Cavalieri, R., Ross, D.: Crepant resolutions and open strings, math.AG/1309.4438v2.
  • 6Bryan, J., Graber, T.: The crepant resolution conjecture. Algebraic geometry Seattle 2005. Part 1, 2 42, Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009.
  • 7Bouchard, V., Klemm, A., Marifio, M., et al.: Remodeling the B-model. Comm. Math. Phys., 287(1), 117-178 (2009).
  • 8Bouchard, V., Klemm, A., Marifio, M., et al.: Topological open strings on orbifolds. Comm. Math. Phys., 296(3), 589-623 (2010).
  • 9Chan, K., Cho, C.-H., Lau, S.-C., et al.: Gross fibration, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi Yau orbifolds, math.SG/1306.0437v3.
  • 10Chan, K., Cho, C.-H., Lau, S.-C., et al.: Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds. Comm. Math. Phys., 328(1), 83-130 (2014).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部