Commuting Structure Jacobi Operator for Real Hypersurfaces in Complex Two-plane Grassmannians
Commuting Structure Jacobi Operator for Real Hypersurfaces in Complex Two-plane Grassmannians
摘要
We classify real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator commutes either with any other Jacobi operator or with the normal Jacobi operator.
We classify real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator commutes either with any other Jacobi operator or with the normal Jacobi operator.
基金
Supported by National Research Foundation of Korea(Grant No.NRF-2011-220-1-C00002)
partially supported by MCT(Grant No.MTM2010-18099)
supported by NRF(Grant No.NRF-2012-R1A2A2A-01043023)
参考文献16
-
1Alekseevskii, D. V.: Compact quaternion spaces. Func. Anal. Appl., 2, 106-114 (1966).
-
2Berndt, J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math., 127, 1-14 (1999).
-
3Berndt, J., Suh, Y. J.: Isometric flows on real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math., 137, 87 98 (2002).
-
4Brozos-Vdzquez, M., Gilkey, P.: Manifolds with commuting Jacobi operators. J. Geom., 86, 21-30 (2006).
-
5Cecil, T. E., Ryan, P. J.: Real hypersurfaces in complex space forms. Tight and Taut Submanifolds, 32, 233-339 (1997).
-
6Jeong, I., Kim, H. J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator. Publ. Math. Debrecen, 76, 203-218 (2010).
-
7Jeong, L, Perez, J. D., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator. Acta Math. Hungarica, 117, 201-217 (2007).
-
8Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with Lie parallel normal Jacobi operator. J. Korean Math. Soc., 45, 1113-1133 (2008).
-
9Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is J-parallel. Kyungpook Math. J., 51, 395-410 (2011).
-
10Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc., 296, 137-149 (1986).
-
1WANG CHUN-MEI.Commuting Toeplitz Operators with Harmonic Symbols on A^2(■,dμ)[J].Communications in Mathematical Research,2009,25(2):165-176.
-
2DUAN Yong Jiang,QI Ting Ting.Weakly k-hyponormal and polynomially hyponormal commuting operator pairs[J].Science China Mathematics,2015,58(2):405-422.
-
3SUN BinYong.On representations of real Jacobi groups[J].Science China Mathematics,2012,55(3):541-555.
-
4Hyunjin LEE,Eunmi PAK,Young Jin SUH.Hopf Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka–Webster D-Parallel Shape Operator[J].Acta Mathematica Sinica,English Series,2017,33(1):61-70.
-
5Yu Feng LU,Jun YANG.Commuting Dual Toeplitz Operators on Weighted Bergman Spaces of the Unit Ball[J].Acta Mathematica Sinica,English Series,2011,27(9):1725-1742. 被引量:6
-
6Ruled Real Hypersurfaces of A Complex Space Form[J].Acta Mathematica Sinica,English Series,1994,10(4):401-409.
-
7朴渭汰,朴根生,赵烈济,金钟圭.COINCIDENCE POINT THEOREMS iN PROBABILISTIC METRIC SPACES WITH A CONVEX STRUCTURES[J].Applied Mathematics and Mechanics(English Edition),1994,15(8):721-733.
-
8张凤云,赵艳,孙华飞.Manifolds with Special Commuting Jacobi Operators[J].Journal of Beijing Institute of Technology,2010,19(4):487-490.
-
9李鹏松,陈书吉,吕雪.基于解析方法电力系统的Hopf分岔类型[J].吉林大学学报(理学版),2012,50(4):701-704. 被引量:5
-
10Yu Feng LU Shu Xia SHANG.Commuting Dual Toeplitz Operators on the Polydisk[J].Acta Mathematica Sinica,English Series,2007,23(5):857-868. 被引量:8