期刊文献+

Nonlinear Degenerate Parabolic Equations with Time-dependent Singular Potentials for Baouendi–Grushin Vector Fields

Nonlinear Degenerate Parabolic Equations with Time-dependent Singular Potentials for Baouendi–Grushin Vector Fields
原文传递
导出
摘要 In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq/ t=▽α·(‖z‖^-2γ▽αu^m)+V(z, t)u^m, uq/ t=u^μ▽α·(u^τ|▽αu|^p-2▽αu)+V(z, t)u^p-1+μ+τin a cylinder Ω×(0, T) with initial condition u(z, 0)=u0(z) ≥ 0 and vanishing on the boundary Ω×(0, T), where Ω is a Carnot-Carathéodory metric ball in Rd+k and the time-dependent singular potential function is V(z, t) ∈ L^1loc (Ω×(0, T)). We investigate the nonexistence of positive solutions of these three problems and present our results on nonexistence. In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq/ t=▽α·(‖z‖^-2γ▽αu^m)+V(z, t)u^m, uq/ t=u^μ▽α·(u^τ|▽αu|^p-2▽αu)+V(z, t)u^p-1+μ+τin a cylinder Ω×(0, T) with initial condition u(z, 0)=u0(z) ≥ 0 and vanishing on the boundary Ω×(0, T), where Ω is a Carnot-Carathéodory metric ball in Rd+k and the time-dependent singular potential function is V(z, t) ∈ L^1loc (Ω×(0, T)). We investigate the nonexistence of positive solutions of these three problems and present our results on nonexistence.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第1期123-139,共17页 数学学报(英文版)
基金 Supported by Nature Science Fund of Shaanxi Province(Grant No.2012JM1014)
关键词 Nonlinear degenerate parabolic equations Baouendi-Grushin vector fields positive solu-tions~ nonexistence Hardy inequality Nonlinear degenerate parabolic equations, Baouendi-Grushin vector fields, positive solu-tions~ nonexistence, Hardy inequality
  • 相关文献

参考文献32

  • 1Aglio, A. D., Giachetti, D., Peral, I.: Results on parabolic equations related to some Caffarelli Kohn Nirenberg inequalities. SIAM J. Math. Anal., 36, 691-716 (2004).
  • 2Aguilar Crespo, J. A., Alonso, I. P.: Global behavior of the Cauchy problem for some critical nonlinear parabolic equations. SIAM J. Math. Anal., 31, 1270-1294 (2000).
  • 3Ahmetolan, S.: Nonlinear degenerate parabolic equations with singular coefficients for Greiner vector fields. Appl. Anal., 87, 741-754 (2008).
  • 4Ahmetolan, S., Cavdar, S.: Nonlinear degenerate parabolic equations with time dependent singular coeffi- cients. Math. Nachr., 284, 1219-1233 (2011).
  • 5Baouendi, M. S.: Sur une classe d'operateurs elliptiques degeneres. Bull. Soc. Math. France, 95, 45-87 (1967).
  • 6Baras, P., Goldstein, J. A.: The heat equation with a singular potential. Trans. Amer. Math. Soc., 284, 121 139 (1984).
  • 7Beckner, W.: On the Grushin operator and hyperbolic symmetry. Proc. Amer. Math. Soc., 129, 1233 1246 (2001).
  • 8Bieske, T.: Viscosity solutions on Grushin-planes..Illinois J. Math., 46, 893 911 (2002).
  • 9Cabre, X., Martel, Y.: Existence versus explosion instantanee pour des quations de la chaleur lineaires avec potentiel singulier. C. R. Acad. Sci. Paris, 329, 973-978 (1999).
  • 10D'Ambrosio, L.: Hardy inequalities related to Grushin type operators. Proc. Amer. Math. Soc., 132, 725-734 (2004).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部