摘要
We give an existence result of entropy and renormalized solutions for strongly nonlinear elliptic equations in the framework of Sobolev spaces with variable exponents of the type: -div (a(x, u,▽u)+φ(u))+g(x, u,▽u)=μ, where the right-hand side belongs to L^1(Ω)+W^-1,p'(x)(Ω), -div(a(x, u,▽u)) is a Leray-Lions operator defined from W^-1,p'(x)(Ω) into its dual and φ∈C^0(R,R^N). The function g(x, u,▽u) is a non linear lower order term with natural growth with respect to |▽u| satisfying the sign condition, that is, g(x, u,▽u)u ≥ 0.
We give an existence result of entropy and renormalized solutions for strongly nonlinear elliptic equations in the framework of Sobolev spaces with variable exponents of the type: -div (a(x, u,▽u)+φ(u))+g(x, u,▽u)=μ, where the right-hand side belongs to L^1(Ω)+W^-1,p'(x)(Ω), -div(a(x, u,▽u)) is a Leray-Lions operator defined from W^-1,p'(x)(Ω) into its dual and φ∈C^0(R,R^N). The function g(x, u,▽u) is a non linear lower order term with natural growth with respect to |▽u| satisfying the sign condition, that is, g(x, u,▽u)u ≥ 0.