期刊文献+

具有区间时变时滞随机基因调控网络的弱保守性的稳定性判据

Less conservative stability criteria for genetic regulatory networks with interval time-varying delays and stochastic disturbances
下载PDF
导出
摘要 研究一类带有随机干扰的时滞基因调控网络的稳定性分析问题。假定时滞是时变的,通过引入适当的Lyapunov泛函,分别利用自由权矩阵方法及Jensen不等式方法,建立基于线性矩阵不等式形式的稳定性判据,保证了所研究的基因调控网络是随机均方渐近稳定的。从理论和数值上对所提出稳定性判据与现有结果进行了保守性比较,说明了所提出方法的有效性。 Consider the problem of stability analysis of a class of delayed genetic regulatory networks (GRNs) with stochastic disturbances. The delays are assumed to vary in intervals. By introducing appropriate Lyapunov-Krasovskii functionals and employing free-weighting matrix approach and Jensen inequality approach, respectively, a pair of stability criteria in the form of linear matrix inequalities are established to guarantee the considered GRNs to be asymptotically stable in the mean square sense. Then, theoretical and numerical comparisons on conservativeness of the proposed stability criteria and one in literature are given, which illustrates the effectiveness of the proposed approach.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2014年第6期719-728,共10页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11371006) 黑龙江省教育厅科学技术资助项目(12541603)
关键词 随机基因调控网络 稳定性 时变时滞 自由权矩阵 JENSEN不等式 stochastic genetic regulatory networks stability time-varying delay free-weighting matrix Jensen inequality
  • 相关文献

参考文献22

  • 1STEGGLES L J, BANKS R, OLIVER S, et al. Qualitatively modelling and analysing genetic regulatorynetworks: a Petri net approach [ J ]. Bioin- formaties, 2007, 23 (3) : 336 - 343.
  • 2FRIEDMAN N, LINIAL M, NACHMAN I. Using Bayesian networks to analyze expression data[ J]. Journal of Computational Biology, 2000, 7 (3 -4) :601 -620.
  • 3GRAUDENZI A, SERRA R, VILLANI M, et al. Dynamical properties of a Boolean model of gene regulatory network with memory[ J ]. Journal of Computational Biology, 2011, 18(10) :1291 -1303.
  • 4LI Chun-guang, CHEN Luo-nan, AIHARA K. Stability of genetic networks with SUM regulatory logic: Lur' e system and LMI approach [ J ]. IEEE Transactions on Circuits and Systems Part I: Regular Papers, 2006, 53 (11 ) : 2451 -2458.
  • 5REN F, CAO J. Asymptotic and robust stability of genetic regulatory networks with time-varying delays[ J ]. Neurocomputing, 2008, 71 (4 -6) : 834 - 842.
  • 6ZHOU Qi, XU Shen-yuan, CHEN bing, et al. Stability analysis of delayed genetic regulatory networks with stochastic disturbances [ J ]. Physics Letters A, 2009, 373(41 ) : 3715 -3723.
  • 7CHEN Luo-nan, AIHARA K. Stability of genetic regulatory networks with time delay[ J]. IEEE Transactions on Circuits and Systems 1-regular Pa- pers, 2002, 49 (5) : 602 - 608.
  • 8SALIMPOUR A, SOJOODI M, MAID V J. Robust stability analysis of stochastic genetic regulatory networks with discrete and distributed delay in both mRNA and protein dynamics[ C ]. Proceedings of the 2010 IEEE Conference on Cybernetics and Intelligent Systems (CIS). Singapore ,IEEE: 2010, 6.. 7 -13.
  • 9ZHANG Wen-bing, FANG Jian-an, TANG Yang. New robust stability analysis for genetic regulatory networks with random discrete delays and dis- tributed delays [ J ]. Neurocomputing, 2011, 74 ( 14 - 15 ) : 2344 - 2360.
  • 10WANG Zheng-xia, LIAO Xiao-feng, MAO Jia-li, et al. Robust stability of stochastic genetic regulatory networks with discrete and distributed de- lays [ J ]. Soft Computing: A Fusion of Foundations, Methodologies and Applications, 2009, 13 ( 12 ) : 1199 - 1208.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部