期刊文献+

l_q稀疏正则化理论及其在热传导反问题中的应用 被引量:1

l_q sparsity regularization theory with the application to a backward heat conduction problem
下载PDF
导出
摘要 lq(0<q≤1)稀疏正则化在实际应用领域已经得到了广泛的应用。在信号处理领域,简单的迭代算法能够得到满意的重构结果,但是,针对较为复杂的偏微分方程反演问题,利用这些算法进行反演往往很难达到最佳的重构效果。将已有的迭代算法进行改进,并将其应用到热传导反演问题中,通过和标准的吉洪诺夫正则化方法进行比较,说明lq稀疏正则化方法和改进的迭代算法的优点。 l^q (0 〈 q ≤ 1 ) sparsity regularization has been widely applied in real fields. In signal processing field, the plausible reconstruction can be obtained by using a simply iterative algorithm. However, the good reconstruction is difficult to be obtained by using a simply iterative algorithm in complex inverse problems for partial differential equations. Hence, the existing iterative algorithm is improved, and the new method is applied to a backward heat conduction problem. By comparing with a standard Tikhonov regularization, the advantages of an lq sparsity regularization and an improved iterative algorithm are obtained.
作者 赵光伟
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2014年第6期752-756,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11301119)
关键词 反问题 稀疏正则化 逆热传导问题 迭代算法 inverse problem sparsity regularization backward heat conduction problem iterative algorithm
  • 相关文献

参考文献6

二级参考文献18

  • 1韩波,付又和.求解非线性不适定问题的正则化同伦方法[J].黑龙江大学自然科学学报,2005,22(5):659-663. 被引量:3
  • 2傅红笋,韩波.二维波动方程速度的正则化-同伦-测井约束反演[J].地球物理学报,2005,48(6):1441-1448. 被引量:21
  • 3Cannon J R. The one - dimensional heat equation [ M ]. Menlo Park, CA : Addsion - Wesley, 1984.
  • 4Chapko R. On the numerical solution of direct and inverse problem for the heat equation in a semi -infinite region [ J ]. J Comput Appl Math, 1999,108:41 - 55.
  • 5Jonas P, Louis A K. Approximate inverse for a one - dimensional inverse heat conduction problem [ J ]. Inverse problems, 2000, 16 ( 1 ) : 175 - 185.
  • 6lsakov V. Solutions of ill - posed problems[ M ]. New York : Winston, 1977.
  • 7Kress R. Linear integral equations[M]. 2 nd ed. Berlin, Heidelberg: Springer-Velag, 1999.
  • 8Lesnic D, Elliott L. The decomposition approach to inverse heat conduction[ J]. J Math Anal Appl, 1999, 232 (1) :82 -98.
  • 9Liu J J. Numerical solution of forward and backward problem for 2 -D heat conduction problem [ J ]. J Comput Appl Maths ,2002, 145 (2) :459 - 482.
  • 10Muniz W B. A comparison of some inverse methods for estimating the initial condition of the heat equation[ J]. J Coput Appl Math, 1999,103:145 - 163.

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部