期刊文献+

一个与广义KKM定理等价的极小极大不等式 被引量:1

A minimax inequality equivalent to the generalized KKM theorem
下载PDF
导出
摘要 引进不用凸包定义的广义对角拟凹与拟凸概念,利用广义KKM定理,得到推广的Ky Fan极小极大不等式;并证明这个极小极大不等式、广义KKM定理与广义Ky Fan截口定理,三者是等价的。最后,利用不用凸包定义的广义对角锥拟凸概念,得到强向量均衡问题解的存在定理。 The concept of generalized diagonal quasi-concavity (quasi-convexity)without convex hull was introduced.Using the generalized KKM theorem,we established a generalized Ky Fan minimax inequality, and which proved to be equivalent to the generalized KKM theorem.Finally,using the concept of generalized diagonal cone quasi-convexity without convex hull,we obtained an existence theorem of solution for strong vector equilibrium problem.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2014年第5期413-416,共4页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11201216)
关键词 广义KKM定理 极小极大不等式 等价性 强向量均衡问题 generalized KKM theorem minimax inequality equivalence strong vector equilibrium problem
  • 相关文献

参考文献7

  • 1YUAN X Z. KKM Theory and Applications in Nonlin-ear Analysis[M]. New York: Dekker, 1999.
  • 2PARK S. New Generalizations of Basic Theorems inthe KKM theory [J]. Nonlinear Anah 2011, 74 : 3000-3010.
  • 3TIAN G Q. Generalized KKM Theorems, Minimax In-equalities ,and Their Applications[J]. J Math Anal Ap-pl, 1994,83 :375-389.
  • 4YANG Z,PU Y J. Generalized Knaster-Kuratowski-Mazurkiewicz Theorem Without Convex Hull [J]. JOptim Theory Appl,2012,154 :17-29.
  • 5GRANAS A’DUGUNDJI J. Fixed Point Theory[M].Springer,New York,2003.
  • 6FU J Y,WANG S H, Generalized Strong Vector Qua-si-equilibrium Problem with Domination Structure[J].J Glob Optim,2013,55:839-847.
  • 7BERGE C. Topological Spaces[M]. Oliver h- Boyd,Edinburgh and Lodon, 1963.

同被引文献6

  • 1FU J Y,WANG S H. Generalized Strong Vector Quasi-equilibrium Problem with Domination Structure[J].J Glob Optim, 2013,55 : 839-847.
  • 2FU J Y. Generalized Vector Quasi-equilibrium Problems[J]. Math Meth Oper Res,2000,52:57-64.
  • 3WEIR T, JEYAKUMAR V. A Class of Nonconvex Functions and Mathematical Programming[J]. Bulletn of Australian Mathematical Society, 1998, 38: 177- 189.
  • 4JAHN J. Mathematical Vector Optimization in Partially Ordered Linear Spaces[M]. New York, Verlag Peter Lang, 1986.
  • 5CHEN G Y,HUANG X X,YANG X Q. Vector Optimization, Set-Valued and Variational Analysis [M]. Berlin, Heidelberg, Springer-Verlag, 2005.
  • 6傅俊义.具有控制结构与不变凸映射的向量优化问题[J].南昌大学学报(理科版),2014,38(1):4-7. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部