期刊文献+

钛基复合材料压气机叶环应力的数值模拟

Numerical Simulation on Stress Distribution of Ti-Matrix Composite Ring
下载PDF
导出
摘要 采用有限元分析方法,建立三维循环对称模型,对连续Si C纤维增强钛基复合材料压气机叶环的应力进行了研究。考虑周围基体包套和中心复合材料的热残余应力,重点分析了叶环尺寸、温度及基体材料性能对叶环应力分布的影响。结果表明,当叶环直径较小、工作温度较低时,叶环的最大环向应力点在内径;随着直径增大、工作温度升高,最大环向应力点出现在中心复合材料靠近内径一侧。基体材料的弹性模量、热膨胀系数和密度,对叶环的应力分布有重要影响,应尽量选择密度低、弹性模量和热膨胀系数较大的钛合金作为基体材料。 A three-dimensional cyclic symmetry finite element model was developed to investigate the stress distribution of compressor ring which was fabricated by continuous SiC fiber reinforced titanium-ma?trix composites (TMC). The effects of size of the ring, temperature and properties of the matrix material on the stress distribution were analyzed emphatically when taking thermal residual stresses between matrix cladding and composite core into consideration. The results indicate that when the diameter of TMC ring is smaller and working temperature is lower, the hoop stresses have a maximum value at the inner diameter (ID) of the ring; as the diameter of the ring and working temperature increase, the hoop stresses reach a peak value at the ID of composite core. The elastic modulus, coefficients of thermal expansions (CTEs) and density of matrix material have a significant effect on the stress distribution of TMC ring. Low density, rela-tively high elastic modulus and CTEs titanium alloy should be selected as the preferable matrix material.
出处 《燃气涡轮试验与研究》 北大核心 2014年第6期41-48,共8页 Gas Turbine Experiment and Research
基金 国家自然科学基金(51271147 51201134 51201135)
关键词 钛基复合材料 压气机叶环 应力 有限元模拟 热残余应力 titanium-matrix composites(TMC) compressor bling stress finite element analysis thermal residual stress
  • 相关文献

参考文献14

  • 1Hooker J A, Doorbar P J. Metal Matrix Composites for Aeroengines[J]. Materials Science and Technology, 2000, 16(7-8): 725-731.
  • 2杨延清,朱艳,陈彦,张清贵,张建民.SiC纤维增强Ti基复合材料的制备及性能[J].稀有金属材料与工程,2002,31(3):201-204. 被引量:52
  • 3Carrere N, Valle R, Bretheau T, et al. Multiscale Analysis of the Transverse Properties of Ti-Based Matrix Compos- ites Reinforced by SiC Fibres: From the Grain Scale to the Macroscopicscale[J]. International Jounal of Plasticity, 2004,20(4) : 783-810.
  • 4Leyens C, Hausmann J, Kumpfert J. Continuous Fiber Re- inforced Titanium Matrix Composites: Fabrication, Proper- ties and Applications[J]. Advanced Engineering Materials, 2003,5(6) : 399-410.
  • 5Arnold S M, Wilt T E. Deformation and Life Prediction of Circumferentially Reinforced SCS-6/Ti-15-3 Ring[C]//. Zaretsky E V. MMC Life System Development (Phase I)-ANASA/Pratt & Whitney Life Prediction Cooperative Pro- gram. NASA RP-1361,1996.
  • 6Robinson D N, Pastor M S. Limit Pressure of a Circumfer- entially Reinforced SiC/Ti Ring[J]. Composites Engineer- ing, 1992,2(4) : 229-238.
  • 7Natsumura T, Nojima Y, Suzumura N, et al. Component Design of CMC and MMC Rotor for Turbine Engine Appli- cations[C]//. 31st International SAMPE Technical Confer- ence. 1999: 130-141.
  • 8Ma Z J, Yang Y Q, Lu X H, et al. The Effect of Matrix Creep Property on the Consolidation Process of SiC/ Ti-6AI-4V Composite[J]. Materials Science and Engineer- ing: A, 2006,433(1) : 343-346.
  • 9Hill R. The Mathematical Theory of Plasticity[M]. Oxford : Oxford university press, 1998.
  • 10Schapery R A. Thermal Expansion Coefficients of Compos- ite Materials Based on Energy Principles[J]. Journal of Composite Materials, 1968,2(3) : 380-404.

二级参考文献1

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部