期刊文献+

半无界奇异边值问题Laguerre谱配置方法

Laguerre spectral collocation method for singular boundary problems on a semi-infinite interval
下载PDF
导出
摘要 以Laguerre-Gauss-Radau节点为配置点,利用广义Laguerre谱配置方法求数值解,逼近半无界常微分方程奇异边值问题的正确解.给出算法格式和相应的数值例子,表明所提算法格式的有效性和高精度.这里所用方法也可用于求解其他奇异问题. This paper deals with the numerical solutions of the singular boundary problems with homogeneous Neumann boundary conditions on a semi-infinite interval. Laguerre-Gauss-Radua nodes are used to construct the Nth degree Lagrange interpolation function to approximate the solution of the ordinary differential equation on a semi-infinite interval and the efficient algorithms are implemented. Numerical results demonstrate its efficiency and high accuracy of this approach. In additions the suggested algorithms can also be used to deal with other sin- gular problem on a semi-infinite interval.
出处 《南阳师范学院学报》 CAS 2014年第12期4-7,共4页 Journal of Nanyang Normal University
基金 国家自然科学基金(11371123) 河南省教育厅自然科学基金(14B110021) 河南科技大学SRTP项目(2013138)
关键词 常微分方程 奇异边值问题 半无界区间 广义Laguerre谱配置方法 Laguerre-Gauss-Radau节点 ordinary differential equation singular boundary problems semi-infinite interval generalized Laguerre spectral collocation methods Laguerre-Gauss-Radua nodes
  • 相关文献

参考文献13

  • 1Chawla M M, Shivakumar P N. On the existence of solutions of a class of singular nonlinear two-point boundary value prob- lems [J]. Journal of computational and applied mathematics, 1987, 19 (3) : 379 - 388.
  • 2Zhang Y. Positive solutions of singular sublinear Emden-Fowler boundary value problems[J]. Journal of Mathematical Analy- sis and Applications, 1994, 185 ( 1 ) : 215 - 222.
  • 3Wei Zhong-li. A class of fourth order singular boundary value problems[J]. Applied mathematics and computation, 2004, 153(3) : 865 -884.
  • 4Alipanah A, Razzaghi M, Dehghan M. The pseudospectral legendre method for a class of singular boundary value problems arising in physiology [ J ]. Journal of Vibration and Control, 2010,16 ( 1 ) :3 - 10.
  • 5张旭.一类奇异非线性两点边值问题的Galerkin解的误差估计[J].计算数学,2010,32(2):195-205. 被引量:3
  • 6Knmar M. A Second Order Spline Finite Difference Method for Singular two point Boundary Value Problems[ J]. Appl Math and Comput, 2003, 142 : 283 - 290.
  • 7Ravi A S V, Reddy K Y N. The Method of Inner Boundary Condition for Singular Boundary Value Problems[J]. Appl Math and Comput, 2003, 139 : 429 - 436.
  • 8王天军.一类线性奇异边值问题的谱配置方法[J].河南科技大学学报(自然科学版),2013,34(6):75-78. 被引量:6
  • 9Yin Yan-hong, Sun Ao, Wang Tian-jun. Spectral Collocation Methods for a Class of Nonlinear Singular Boundary Value Problems[ C ]//Advanced Mechatronic Systems (ICAMechS) , 2013 International Conference on IEEE, 2013:609 -612.
  • 10Guo Ben-yu, Zhang Xiao-yong. Spectral method for differential equations of degenerate type on unbounded domains by using generalized Laguerre functions [ J ]. Applied numerical mathematics, 2007, 57 (4) : 455 - 471.

二级参考文献24

  • 1Tian-jun Wang Ben-yu Guo.MIXED LEGENDRE-HERMITE PSEUDOSPECTRAL METHOD FOR HEAT TRANSFER IN AN INFINITE PLATE[J].Journal of Computational Mathematics,2005,23(6):587-602. 被引量:4
  • 2Chen Chuanmiao.Superconvergence of Galerkin solutions for singular nonlinear two-point boundary value problems[J].Math.Numer.Sinica,1985,7(2):113-123.
  • 3Dailey J W,Pierce J G.Error bounds for the Galerkin method applied to singular and nonsingular boundary value problems[J].Numer.Math.,1972,19:266-282.
  • 4Eisenstat S G,Schreiber R S,Schultz M H.Finite element methods for spherically symmetric elliptic equations[R].Yale Computer Science Report,1977,109.
  • 5Eriksson K and Thomée V.Galerkin method for singular boundary value problems in one space dimension[J].Math.Comput.,1984,42:345-367.
  • 6Eriksson K and Nie Yiyong.Convergence analysis for a nonsymmetric Galerkin method for a class of singular boundary value problems in one space dimension[J].Math.Comp.,1987,49(179):167-186.
  • 7Jespersen D.Ritz-Galerkin methods for singular boundary value problems[J].SIAM J.Numer.Anal.,1978,15:813-834.
  • 8Schreiber R and Eisenstat S C.Finite element methods for spherically symmetric elliptic equations[J].SIAM J.Numer.Anal.,1981,18:546-558.
  • 9Wheeler M F.An optimal L∞ error estimate for Galerkin approximations to solutions of two-point boundary value problems[J].SIAM J.Numer.Anal.,1973,10:914-917.
  • 10O' Regan D. Theory of Singular Boundary Value Problems [ M ]. Singapore : World Scientific Press, 1994.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部