摘要
以Laguerre-Gauss-Radau节点为配置点,利用广义Laguerre谱配置方法求数值解,逼近半无界常微分方程奇异边值问题的正确解.给出算法格式和相应的数值例子,表明所提算法格式的有效性和高精度.这里所用方法也可用于求解其他奇异问题.
This paper deals with the numerical solutions of the singular boundary problems with homogeneous Neumann boundary conditions on a semi-infinite interval. Laguerre-Gauss-Radua nodes are used to construct the Nth degree Lagrange interpolation function to approximate the solution of the ordinary differential equation on a semi-infinite interval and the efficient algorithms are implemented. Numerical results demonstrate its efficiency and high accuracy of this approach. In additions the suggested algorithms can also be used to deal with other sin- gular problem on a semi-infinite interval.
出处
《南阳师范学院学报》
CAS
2014年第12期4-7,共4页
Journal of Nanyang Normal University
基金
国家自然科学基金(11371123)
河南省教育厅自然科学基金(14B110021)
河南科技大学SRTP项目(2013138)