期刊文献+

光学频率梳基于光谱干涉实现绝对距离测量 被引量:12

Spectral interferometry based absolute distance measurement using frequency comb
原文传递
导出
摘要 详细分析了光学频率梳光谱干涉的原理,建立了较全面的光谱干涉的数学模型,为实现绝对距离测量提供理论分析基础.基于光谱干涉,指出通过光谱干涉条纹的振荡频率,即一次傅里叶变换,可以实现绝对距离测量,数值模拟结果表明,最大测量误差为1.5 nm;提出了一种等效的多波长并行零差干涉的方法,分析了多波长并行零差干涉法的测距原理.数值模拟结果表明,多波长并行零差干涉法的最大误差为8.7 nm;通过脉冲啁啾实现绝对测距,分析了基于脉冲啁啾实现绝对测距的原理,数值模拟结果表明,最大测距误差为5.3 nm. Spectral interferometry using frequency comb has become a powerful approach to absolute distance measurement. In this paper, we analyze the principle of spectral interferometry in detail. With the consideration of dispersion, pulse chirp and the power ratio of the reference pulse and the measurement pulse, we develop a Gaussian model, which can be used to determine distances. The frequency of the spectral interference fringe is of key importance. The distances can be directly determined by the frequency of the spectral interference fringe through one-step fast Fourier transform with no filters during the data processing. The simulation results show that the maximum deviation is 1.5 nm when the distance is 1.5 mm theoretically. The comb consists of hundreds of thousands of teeth in the spectral domain, and each tooth can be regarded as a cw laser. We propose a method based on the phases of two close modes. The principle is introduced, and the maximum deviation is 8.7 nm with a distance of 1.5 mm while the minimum deviation is 0.3 nm corresponding to distance of 0.5 mm. We theoretically show that the linear pulse chirp can be used for distance measurement. The measurement principle is analyzed, and the simulation shows that the maximum deviation is 5.3 nm when the distance is 1.2 mm.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第2期54-64,共11页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51327006 51105274) 高等学校博士学科点专项科研基金(批准号:20120032130002)资助的课题~~
关键词 光学频率梳 绝对测距 光谱干涉 optical frequency comb absolute distance measurement spectral interferometry
  • 相关文献

参考文献21

  • 1Liao S S,Yang T,Dong J J.2014.Chin.Phys.B 23 073201.
  • 2朱敏昊,吴学健,尉昊赟,张丽琼,张继涛,李岩.2013.物理学报,62 070702.
  • 3邢书剑,张福民,曹士英,王高文,曲兴华.2013.物理学报,62 170603.
  • 4Zhang Y C,Wu J Z,Li Y Q,Jin L,Ma J,Wang L R,Zhao Y T,Xiao L T,Jia S T.2012.Chin.Phys.B 21 113701.
  • 5吴翰钟,曹士英,张福民,邢书剑,曲兴华.2014.物理学报,63 100601.
  • 6Minoshima K,Matsumoto H 2000 Appl.Opt.39 5512.
  • 7Baumann E,Giorgetta F R,Coddington I,Sinclair L C,Knabe K,Swann W C,Newbury N R.2013.Opt.Lett.38 2026.
  • 8Hyun S,Kim Y J,Kim Y,Kim S W.2010.CIRP Annals:Manufacturing Technology 59 555.
  • 9Schuhler N,Salvadé Y,Lévêque S,D?ndliker R,Holzwarth R.2006.Opt.Lett.31 3101.
  • 10Salvadé Y,Schuhler N,Lévêque S,Floch S L.2008.Appl.Opt.47 2715.

同被引文献88

引证文献12

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部