期刊文献+

iTOUGH2反演模型在地下水模拟中的应用 被引量:8

Application of iTOUGH2 to groundwater modeling
下载PDF
导出
摘要 模型参数快速校准是地下水数值模型应用中非常重要和困难的工作,反演模型提高了该工作的效率。在阐述i TOUGH2反演模型流程和TOUGH2/EOS9模块原理的基础上,介绍了i TOUGH2关于敏感性分析、参数估计和不确定性分析的原理。以FEFLOW软件中含三个观测井信息的Breyell抽水试验为例,利用i TOUGH2进行了敏感性分析、参数估计和不确定性分析,发现渗透率和孔隙度为敏感参数,而且通过加权最小二乘法的目标函数和优化算法获得了参数的估计值,最后使用一次二阶矩法和蒙特卡罗法分别进行了不确定性分析。将i TOUGH2反演的参数估计值与FEFLOW反演结果对比,发现两者接近,说明i TOUGH2的反演结果是可靠的。i TOUGH2对应的功能全,包括参数反演,敏感性分析,不确定性分析,可作为地下水模型反演模型的选择之一。 Rapid and effective parameter calibration is important and difficult in groundwater modeling. Inverse groundwater modeling makes parameter estimation efficient. This study presents the workflow of iTOUGH2 and the principle of TOUGH2/EOS9 module, and introduces three key functions of the iTOUGH2 software in detail, i. e. , sensitivity analysis, parameter estimation and uncertainty propagation analysis. The Breyell pump test in the FEFLOW software is taken as an example. This paper demonstrates the capabilities of iTOUGH2, and it is found that permeability and porosity are more sensitive to the model outputs than pore compressibility. The estimation of the parameters is obtained and the uncertainty propagation analysis is also performed. Parameters estimated with iTOUGH2 are close to those estimated with FEFLOW. In this case, the first-order-second-moment error propagation analysis is more applicable than the Monte Carlo method. The iTOUGH2 software has powerful functions including parameter estimation, sensitivity analysis and uncertainty propagation analysis. It is an option for inverse groundwater modeling for improving the efficiency of model use.
出处 《水文地质工程地质》 CAS CSCD 北大核心 2015年第1期35-41,共7页 Hydrogeology & Engineering Geology
基金 国家国防科工局高放废物地质处置研究开发(科工计(2012)240号)
关键词 iTOUGH2 反演模型 参数估计 敏感性分析 不确定性分析 蒙特卡罗法 iTOUGH2 inverse model parameter estimation sensitivity analysis uncertainty propagation analysis Monte Carlo method
  • 相关文献

参考文献23

  • 1Carrera J, Neuman S P. Estimation of aquiferparameters under transient and steady state conditions: 2. uniqueness, stability, and solution algorithms[ J]. Water Resources Research, 1986, 22 (2) :211 -227.
  • 2Neuman S P. Calibration of distributed parameter groundwater flow models viewed as a multip objective decision process under uncertainty [ J ]Water Resources Research, 1973, 9 (4) : 1006-1021.
  • 3Poeter E P, Hill M C. Inverse models: a necessary next step in ground-water modeling [ J ]. Ground Water, 1997, 35(2) :250 -260.
  • 4Hill M C, Cooley R L, Pollock D W. A controlled experiment in ground water flow model calibration [J]. Ground Water, 1998, 36(3) :520 -535.
  • 5Doherty J. PEST model-independent parameter estimation [ Z ]. Watermark Numerical Computing, 2002.
  • 6Zyvoloski G, Kwicklis E, Eddebbarh A A, et al. The site-scale saturated zone flow model for Yucca Mountain: calibration of different conceptual models and their impact on flow paths [ J ]. Journal of Contaminant Hydrology ,2003, 62/63:731 - 750.
  • 7Eileen P P, Mary C H. Documentation of UCODE, a computer code for universal inverse modeling [ R ]. Denver, Colorado : U.S. Geological Survey : 1998.
  • 8姚磊华.遗传算法和高斯牛顿法联合反演地下水渗流模型参数[J].岩土工程学报,2005,27(8):885-890. 被引量:17
  • 9Finsterle S. iTOUGH2 user' s guide [ R]. Lawrence Berkeley National Laboratory Report. Berkeley, CA, 2007.
  • 10Pruess K. TOUGH2 user' s guide, version 2.0 [ R]. Lawrence Berkeley National Laboratory Report. Berkeley, 1999.

二级参考文献8

  • 1Neuman S P. Calibration of distributed parameter groundwater flow models viewed as a multipe-objective decision process under uncertainty[J]. Water Resources Research, 1973,9 (4):1006–1021.
  • 2Robert Willis, William W G. Groundwater Systems Planning & Management[M]. Prentice-Hall, Inc. 1987.
  • 3Jingsheng Li, Derek Elsworth. A modified Gauss-Newton method for aquifer parameter identification[J]. Ground Water,1995, 33(4): 662–668.
  • 4K EI Harrowni, D Ouazar, Cheng A H D. Boundary and parameter identification using genetic algorithms and boundary element method[A]. Proc Of Computer Method and Water Resources 111[C]. Computational Mechanics publications. 1996, 487–496.
  • 5Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs[M]. Springer -Verlag Berlin HeidelBerg, 1996.
  • 6De Jong K A. An Analysis of the Behavior of a Class of Genetic Adaptive System[D]. Univ of Mich Press, 1975.
  • 7Schraudolph N, Belew R. Dynamic parameter encoding for genetic algorithms[R]. University of San Diego, 1993.
  • 8李竞生,姚磊华.十进制遗传算法在水文地质参数识别中的应用[J].煤炭学报,2001,26(4):341-345. 被引量:9

共引文献16

同被引文献75

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部