期刊文献+

微量钛镁复合处理对低碳钢中夹杂物和组织的影响 被引量:2

Effect of Ti-Mg Treatment on Inclusions and Microstructure of Low Carbon Steel
原文传递
导出
摘要 对低碳钢进行钛镁复合处理,通过SEM-EDS和金相显微镜表征钢中夹杂物的特征(种类、尺寸、分布)和微观组织变化,探讨夹杂物诱导形核的可能机制。结果表明:钛镁复合处理后,钢中77%的夹杂物尺寸小于4μm,单位体积的夹杂物数量提高了48%;(Ti,Mg)Ox-MnS型复合杂物具有促进晶内铁素体形核的能力;贫Mn区是(Ti,Mg)Ox-MnS型复合夹杂物诱导晶内铁素体形核的可能机制。 The Ti-Mg treatment was carried out in low carbon steel, and its effects on inclusion(type,size, distribution) and microstructure and the possible mechanism of inclusions induced nucleation hadbeen studied by scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS), and opticalmicroscopy(OM). It was found that after treatment, the number of inclusions per unit volume increased by48%, and the inclusions whose size is less than 4 μm accounted for 77%. Microstructure observation con-firmed intra-granular acicular ferrites which is due to the nucleation effect induced by(Ti,Mg)Ox-MnScomposite inclusions. Moreover, line scanning analysis indicated that Mn-depletion zone(MDZ) exist insteel matrix adjacent to the complex inclusion. This phenomenon can be explained by the absorption of Mnin(Ti,Mg)Ox, and this MDZ promotes the nucleation of intra-granular acicular ferrite.
出处 《钢铁钒钛》 CAS 北大核心 2014年第6期86-90,共5页 Iron Steel Vanadium Titanium
基金 国家自然科学基金(51474001 51304001) 教育部科学技术重点项目(211074) 住房和城乡建设部科学技术项目(2012-K4-41) 钢铁冶金新技术国家重点实验室开放课题(KF13-07) 安徽工业大学研究生创新研究基金(2013005)
关键词 低碳钢 钛镁复合处理 夹杂物 晶内铁素体 形核机制 low carbon steel Ti-Mg treatment inclusion intra-granular ferrite mechanism of nucleation
  • 相关文献

参考文献4

二级参考文献31

  • 1刘中柱,桑原守.氧化物冶金技术的最新进展及其实践[J].炼钢,2007,23(3):7-13. 被引量:64
  • 2TAKAMURA J, MIZOGUCHI S. Roles of oxides in steels performance[C]//Proceedings of the 6th International Iron and Steel Congress. Nagoya: Iron and Steel Institute of Japan, 1990: 591-597.
  • 3BABU S S, DAVID S A. Inclusion formation and microstructure evolution in low alloy steel welds[J]. ISIJ International, 2002, 42(12): 1344 1353.
  • 4SHA Q Y, SUN Z Q. Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed steel[J]. Materials Science and Engineering A, 2009, 523: 77-84.
  • 5FURUHARA T, SHINYOSHI T, MIYAMOTO G, YAMAGUCHI J,SUGITA N, KIMURA N, TAKEMURA N, MAKI T. Multiphase crystallography in the nucleation of intragranular ferrite on MnS+V(C, N) complex precipitate in austenite[J]. ISIJ International, 2003, 43(12): 2028-2037.
  • 6SARMA D S, KARASEV A V, JONSSON P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. ISIJ International, 2009, 49(7): 1063-1074.
  • 7ZHANG L, LI Y J, WANG J, JIANG Q L. Effect of acicular ferrite on cracking sensibility in the weld metal of Q690+Q550 high strength steels[J]. ISIJ International, 2011, 51(7): 1132-1136.
  • 8KOJIMA A, KIYOSE A, UEMORI R, MINAGAWA M, HOSHINO M, NAKASHIMA T, ISHIDA K, YASUI Y. Super high HAZ toughness technology with fine microstructure imparted by fine particles[J]. Nippon Steel Technical Report, 2004, 380: 2-5.
  • 9SAXENA S K. Refining reaction of magnesium in steel at steelmaking temperature[C]//Proceedings International Symposium on the Physical Chemistry of Iron and Steel making. Toronto: Conference of Metallurgists, 1982: 17-22.
  • 10KIM H S, CHANG C H, LEE H G. Evolution of inclusions and resultant mierostructural change with Mg addition in Mn/Si/Ti deoxidized steels[J]. Scripta Materialia, 2005, 53(11): 1253-1258.

共引文献39

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部