期刊文献+

受限空间分子自扩散性质的耗散粒子动力学模拟 被引量:3

Dissipative particle dynamics simulation of molecule self-diffusion under cylindrical confinement
原文传递
导出
摘要 基于耗散粒子动力学模拟研究了强排斥壁面作用下圆管状受限空间内单粒子及柔性链分子自扩散系数的变化规律,并对空间受限作用下分子扩散性质的各向异性进行了深入分析.结果表明,随着圆管管径的增大,单粒子及柔性链分子的自扩散系数均呈现先减小后增大的变化规律,且出现自扩散系数最小值对应的管径随链长的增加逐渐减小;柔性链分子因其在圆管中异于体相的伸展状况,自扩散系数的变化幅度随链长的增加而变大;圆管中分子径向自扩散系数随管径的增大逐渐增大,并与管径近似为指数关系,分子轴向自扩散系数则随管径的增大先减小后逐渐收敛于体相自扩散系数. The self-diffusion coefficient of molecules of one bead or flexible chain type under cylindrical confinement with strong exclusion interface was simulated by dissipative particle dynamics, and the anisotropy of molecular self-diffusion was analyzed in detail. The simulation results show that the self-diffusion coefficients of molecules of one bead or flexible chain type first decreased and then increased with the increase of the cylinder radius, and the cylinder radius corresponding to the minimum self-diffusion coefficient decreased with the increase of molecule length. The variation range of the self-diffusion coefficient of flexible chain molecules was amplified with the increase of the molecule length, due to the difference of their extension between the confinement and the bulk state. With the increase of the cylinder radius, the radial self-diffusion coefficient increased and approximately has an exponential relationship with the cylinder radius; the axial self-diffusion coefficient first decreased and then gradually converged to the bulk self-diffusion coefficient.
出处 《中国科学:化学》 CAS CSCD 北大核心 2015年第1期42-48,共7页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(21306199,21490584) 国家重点基础研究发展计划(2012CB224806) 国家杰出青年科学基金(21025627)资助
关键词 自扩散系数 限域传质 耗散粒子动力学 各向异性 Rouse链 self-diffusion coefficient mass transfer under confinement dissipative particle dynamics anisotropy of self-diffusion Rouse polymer chain
  • 相关文献

参考文献3

二级参考文献38

  • 1陈硕,赵钧,范西俊,王丹.复杂流体流动的耗散粒子动力学研究进展[J].科技通报,2006,22(5):596-602. 被引量:14
  • 2Deen W M. Hindered transport of large molecules in liquid-filled pores[J]. AIChE j. , 1987, 33(9): 1409-1425.
  • 3Baltus R E. Catalytic processing of heavy crude oils and residuals II. Diffusional limitations and deactivation phenomena [J]. Fuelsci. tech. int'l., 1993, 11(5&6): 783-830.
  • 4Nortz R L , Baltus R E , Rahimi P. Determination of the macroscopic structure of heavy oils by measuring hydrodynamic properties [J]. Ind. eng. chem. res., 1990, 29(9): 1968-1976.
  • 5Renkin E M. Filtration, diffusion, and molecular sieving through porous cellulose membranes [J]. J. general physiology, 1954, 38(2): 225-243.
  • 6Pawar Y, Anderson J L. Hindered diffusion in slit pores: an analytical result [J]. Ind. eng. chem. res. , 1993, 32(4): 743-746.
  • 7Tsai C H, Massoth F E, Lee S Y, et al. Effect of coal-derived-liquid solvent on the hydrogenation and restrictive diffusion of nickel porphyrins [J]. Fuel process, technol. , 1991, 29(3) : 153-169.
  • 8Satterfield C N, Colton C K, Pitcher W H Jr. Restricted diffusion in liquids within fine pores [J]. AIChE j. , 1973, 19 (3) : 628-635.
  • 9Baltus R E, Anderson J L. Hindered diffusion of asphaltenes through microporous membranes [J]. Chem. eng. sci. , 1983, 38(12): 1959-1969.
  • 10Lee S Y, Seader J D, Tsai C H, et al. Restrictive di{fusion under catalytic hydroprocessing conditions [J]. Ind. eng. chem. res., 1991, 30(1):29-38.

共引文献14

同被引文献64

  • 1MIJATOVIC D, EIJKEL J C, VAN DEN BERG A. Technologies for nanofluidic systems: top-down vs. bottom-up--a review [J]. Lab. Chip., 2005, 5(5): 492-500. DOI: 10.1039/b416951d.
  • 2PERRY J L, KANDLIKAR S G. Review of fabrication of nanochannels for single phase liquid flow [J]. Mierofluid. Nanofluid., 2005, 2(3): 185-193. DOI: 10.1007/s10404-005-0068-1.
  • 3ABGRALL P, NGUYEN N T. Nanofluidic devices and their applications [J]. Anal. Chem., 2008, 80(7): 2326-2341. DOI: 10.1021/ac702296u.
  • 4GOLDBERGER J, FAN R, YANG E Inorganic nanotubes: a novel platform for nanofluidics [J]. Ace. Chem. Res., 2006, 39(4): 239-248. DOI: 10.1021/ar040274h.
  • 5BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces [J]. Chem. Soc. Rev., 2010, 39(3): 1073-1095. DOI: 10.1039/ b909366b.
  • 6EIJKEL J C T, VAN DEN BERG A. Nanofluidics: what is it and what can we expect from it? [J]. Microfluid. Nanofluid., 2005, 1(3): 249-267. DOI: 10.1007/s10404-004-0012-9.
  • 7SPARREBOOM W, VAN DEN BERG A, Eijkel J C T. Transport in nanofluidic systems: a review of theory and applications [J]. New 3i Phys., 2010, 12(1): 015004. DOI: 10.1088/1367-2630/12/1/015004.
  • 8ALEXIADIS A, KASSINOS S. Molecular simulation of water in carbon nanotubes [J]. Chem. Rev., 2008, 108(12): 5014-5034. DOI: 10.1021/cr078140f.
  • 9REISNER W, PEDERSEN J N, AUSTIN R H. DNA confinement in nanochannels: physics and biological applications [J]. Rep. Prog. Phys., 2012, 75(10): 106601. DOI: 10.1088/0034-4885/75/10/ 106601.
  • 10STRIOLO A. The mechanism of water diffusion in narrow carbon nanotubes [J]. Nano Lett., 2006, 6(4): 633-639. DOI: 10.1021/ n1052254u.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部