摘要
对乳腺癌基因芯片试验结果进行数据分析,寻找在正常组织与癌组织中呈现差异表达的基因.运用微阵列芯片显著性分析(SAM)方法进行差异表达基因的筛选,并使用permutation算法计算错误发现率(FDR).一些呈现差异表达的基因被筛选出来,其中一部分基因已被数篇文献报道过,认为它与乳腺癌发病相关.SAM方法比较适用于对基因芯片实验的结果进行相关基因的初步筛选,筛选出的基因可用于为进一步的研究提供候选基因.
Object: Analysis the data of breast cancer microarrays downloaded from public gene databases to find out differential expressed genes between normal tissues and cancer tissues. Method: Choose the significance analysis of microarrays (SAM) method to find out differential expressed genes, and compute the false discovery rate (FDR) using permutation method. Results: A number of differential expressed genes were selected, part of which were reported to be associated with breast cancer by several papers. Conclusion: SAM is suit for choosing differential expressed genes from microarrays preliminary, and the genes selected can be used to provide candidate genes for further study.
出处
《数学的实践与认识》
北大核心
2015年第1期112-118,共7页
Mathematics in Practice and Theory