期刊文献+

一类自调节免疫的时滞病毒感染模型分析

The Analysis of a Delay Virus Infection Model with Self-Adjusting Immune
原文传递
导出
摘要 针对病毒在感染宿主的过程中,细胞免疫的时间滞后、非线性发生率、自调节免疫等因素往往同时出现的问题,建立了具有饱和发生率和自调节免疫的时滞病毒感染模型,证明了当R_0≤1,τ为任意值时,无病平衡点局部渐近稳定,当R_0>1时,存在唯一正平衡点,且在一定的条件下,存在-σ_0>0,当τ<τ_0时,正平衡点局部渐近稳定;当τ>τ_0时,正平衡点不稳定.最后,通过数值模拟验证了理论结果的正确性. In this paper, there exists some factors at the same time such as delay, nonlinear incidence and self regulating immune when virus infects host cell, a virus infection model with saturated incidence rate and immune regulation delay is set up. We prove that if R0≤1, T is arbitrary value, then the disease-free equilibrium is locally asymptotically stable. When R0 〉 1, we prove that there exists a unique endemic equilibrium,and under certain conditions, there is a τ0 〉 0, when τ 〈 τ0,the endemic equilibrium is locally asymptotically stable. While τ 〉 τ0, it is unstable. In the end, Numerical simulations are carried out to explain the mathematical conclusions .
机构地区 中北大学理学院
出处 《数学的实践与认识》 北大核心 2015年第1期317-324,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(10901145) 山西省自然科学基金(2012011002-1)
关键词 基本再生数 局部渐近稳定 饱和发生率 Routh.Hurwitz判据 时滞 自调节免疫 basic reproduction number local asymptotically stable saturated incidence rate routh-Hurwitz criterion time delay self-adjusting immune
  • 相关文献

参考文献14

  • 1舒红兵.抗病毒天然免疫[M].北京:科学出版社,2009:1.
  • 2Khalid Hattaf, Noura Yousfi, Stability analysis of a virus dynamics model with general incidence rate and two delays[J]. Applied Mathematics and Computation, 2013(221): 514-521.
  • 3Yanni Tian, Xianning Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate[J]. Nonlinear Analysis: Real World Applications, 2014(16): 17-26.
  • 4Guang Huang, Wanbiao Ma, Global properties for virus dynamics model with Beddington-DeAngelis functional response[J]. Applied Mathematics Letters, 2009(22): 1690-1693.
  • 5Michael Y. Li, Hongying Shu, Global Dynamics of an In-host Viral Model with Intracellular De- lay[J]. Bulletin of Mathematical Biology, 2010(72):1492-1505.
  • 6Hong Xiang, Li-Xiang Feng, Stability of the virus dynamics model with Beddington-DeAngelis functional response and delays[J]. Applied Mathematical Modelling, 2013(37): 5414-5423.
  • 7Nowak M A, Bangham C R M. Population dynamics of immune responses to persistent viruses[J]. Science, 1996(272): 74-79.
  • 8杨茂,王开发.一类非线性感染率病毒动力学模型分析[J].四川师范大学学报(自然科学版),2009,32(3):304-306. 被引量:18
  • 9Xie Q, Huang D, Zhang S, Cao J. Analysis of a viral infection model with delayed immune re- sponse[J]. Appl Math Model, 2010, 34: 2388-2395.
  • 10Krakovska O, Wahl L M. Costs versus benefits:best possible and best practical treatment regimens -for HIV[J]. Math Biol, 2007, 54: 385-406.

二级参考文献16

  • 1黄玉梅,李树勇,潘杰.具有阶段结构的SIRS传染病模型[J].四川师范大学学报(自然科学版),2005,28(1):31-33. 被引量:10
  • 2唐国宁.KGW模型、流行病模型的重正化群方法研究[J].广西师范大学学报(自然科学版),1995,13(3):39-43. 被引量:2
  • 3郭淑利,江晓武.由两种不同病毒导致的SIR流行病模型分析[J].郑州大学学报(理学版),2006,38(2):5-8. 被引量:4
  • 4王开发,邓国宏,樊爱军.宿主体内病毒感染的群体动力学研究[C]//陆征一,周义仓.数学生物学进展.北京:科学出版社,2006:58-73.
  • 5Wang Kai-fa, Wang Wen-di. Propagation of HBV with spatial dependence [J]. Math Biosci ,2007,210:78-95.
  • 6Ebert D, Zsehokke-Rohringer C D, Carius H J. Dose eftecls and density-dependent regulation of two mieroparasites of Daphniamagma[J].Oeeologia ,2000,122:200-209.
  • 7McLean A R, Bostock C J. Scrapie infections initiated at valying doses:an analysis of 117 titration experiments[ J]. Phil Trans R Soc Lond B,2000,355:1043-1050.
  • 8Spouge J L, Shrager R I, Dimitrov D S. HIV-1 infection kinetics in tissue cultures[ J ]. Math Biosci, 1996,138 : 1-22.
  • 9Bonhoeffer S, Coffin J M, Nowak M A. Human immunodeficiency virus drug therapy and virus load[J].J Virology, 1997,71: 3275-3278.
  • 10Bartholdy C, Christensen J P, Wodarz D,et al. Persistent virus infection despite chronic eytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected witil lymphocytic chrofiomeningitis virus[J]. J Virology ,2000,74:10304-10311.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部