期刊文献+

挠性压圈在被动式热分析中的应用研究 被引量:3

Investigation of Flexible Element in Passive Athermalisation
原文传递
导出
摘要 为了实现红外光学系统的被动式无热化,设计了挠性压圈,建立了有限元分析模型,对透镜表面的接触应力和挠性压圈结构参数的灵敏度进行了研究。首先,根据光机结构的无热化要求介绍了挠性压圈,对两种常用的挠性压圈进行了热变形分析;然后,在分析挠性压圈的灵敏度系数的基础之上,对单透镜组件设计了相应的挠性结构,说明了挠性构件在被动式无热化中能够减小透镜表面的接触应力以及增加对镜座材料的选择;最后,将挠性压圈应用在三片式透镜的光学系统当中。通过分析计算,当调制传递函数(MTF)的空间频率为10 lp/mm时,挠性压圈作用下的三片式光学系统的MTF能够达到0.5以上;普通压圈在60℃和-20℃的像面离焦量分别为4.765 mm和-6.312 mm,而相同温度下挠性压圈的像面离焦量分别为1.261 mm和-1.563 mm。基本满足了红外光学系统的被动式无热化要求。 In order to realize the athermalisation of infrared optical system, an finite element analysis (FEA) model is established to analysize the contact stress of the lens and sensitivity of the structure. First, based on the athermal requirements of the optical system, the concept of the flexible pressure ring is introduced. Then, thermal deformation analysis is made on the flexible elements. After that, we design the flexible elements based on the sensitivity analysis, which gets that the flexible elements can reduce the contact stress of the lens and makes the choice of the lens sear materials more easily. Finally, the flexible elements is introduced to the triplet system. The simulation results indicate that the modulation transfer function (MTF) of the triplet system is above 0.5 under the use of flexible elements when the spacial frequency of MTF is 10 lp/mm. The defocus of the ordinary pressure ring under 60 ℃ and -20 ℃ are 4.765 mm and -6.312 mm respectively while the flexible are 1.261 mm and -1.563 mm respectively. The use of the flexible elements can meet the athermal requirements of the infrared system.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第1期342-349,共8页 Chinese Journal of Lasers
基金 国家自然科学基金(61178041)
关键词 光学设计 光机结构 被动式无热化 挠性压圈 接触应力 optical design opto-mechanical structure passive athermalization flexible element contactstress
  • 相关文献

参考文献19

  • 1吴晓靖,孟军和.使用简单机械结构实现红外光学系统无热化[J].红外与激光工程,2005,34(4):391-393. 被引量:20
  • 2Yoder Jr P R. Opto-Mechanical Systems Design[M]. Boca Raton: CRC press, 2005. 725-741.
  • 3Chin D. Optical mirror-mount design and philosophy[J]. Appl Opt, 1964, 3(7): 895-901.
  • 4Young P, Sehreibman M. Alignment design for a cryogenic telescope[C]. International Society for Optics and Photonics, 1980. 171- 178.
  • 5Iraninejad B, Vukobratovich D, Richard R M, et al.. A mirror mount for cryogenic environments[C]. International Society for Optics and Photonics, 1984.34-39.
  • 6Bacieh J J. Precision lens mounting: U.S. Patent 4,733,945[P]. 1988-3-29.
  • 7Vukobratovieh D, Richard R M. Flexure mounts for high-resolution optical elements[C]. International Society for Optics and Photonics, 1988. 18-36.
  • 8Ahmad A, Huse R L. Mounting for high resolution projection lenses: U.S. Patent 4,929,054[P]. 1990-5-29.
  • 9Steele J M, Vallimont J F, Rice B S, et al.. A compliant optical mount design[C]. International Society for Optics and Photonics, 1992. 387-398.
  • 10Bruning J H, DeWitt F A, Hanford K E. Decoupled mount for optical element and stacked annuli assembly: U.S. Patent 5,428,482 [P]. 1995-6-27.

二级参考文献71

共引文献127

同被引文献29

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部