期刊文献+

基于SVR对交通流中线性关联关系的分析与研究 被引量:2

Linear correlative analysis and research of traffic flow based on SVR
下载PDF
导出
摘要 针对断面交通检测数据往往存在着错误、缺失、包含较多噪声等问题,提出了一种基于支持向量回归机的数据预处理方法。先将相邻路段的数据运用线性回归思想筛选、重组,添加到支持向量回归机的数据集中,然后对相邻路段与预测路段之间线性关系进行实时的、动态的分析和计算,从而避免了数据丢失,既有效地压缩了训练集特征数,提高了计算效率,也提高了模型的泛化能力。实验结果表明,对比未作预处理的SVR模型,改进后的模型拟合度提高了25倍,均方误差也明显减小。 To solve the traffic data loss and low computational efficiency of many models in the field of prediction of traffic flow, this paper proposed a data preprocessing method based on support vector regression machine. Firstly, it filtered and recombined the data of adjacent sections based on the idea of linear regression prediction, and then the processed data was added to the data set of support vector regression machine. Secondly, it analyzed and calculated the linear relationship between adjacent sections and forecast section in real time. Thus avoided the loss of data, and compressed characteristics of training sets effectively,so that improved the computational efficiency and the generalization ability of the model. The experimental results show that the improved model enhances the R-Squared by 25 times comparing with the none-pretreatment model, and mean square error reduces obviously.
出处 《计算机应用研究》 CSCD 北大核心 2015年第2期419-422,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60972078) 甘肃省自然科学基金资助项目(0916RJZA015)
关键词 交通流预测 支持向量回归机 数据预处理 相邻路段 线性关系 traffic flow forecast support vector regression machine data preprocessing adjacent sections linear relationship
  • 相关文献

参考文献15

  • 1PEETA S, ZILIASKOPOULOS A K. Foundations of dynamic traffic assignment: the past, the present and the future [ J]. Networks and Spatial Economics,2001,1 ( 3 ) : 233 - 265.
  • 2KARLAFTIS M, VLAHOGIANNI E. Statistical methods versus neural networks in transportation research : differences, similarities and some insights [ J ]. Transportation Research Part C: Emerging Technol- ogies,2011,19(3) :387-399.
  • 3LI Xing-yi,JlANG Yu-ba,SHI Hua-ji. Short-term traffic volumes fore- casting of road network based on nonparametric regression[ C ]//Proc of the 7th International Conference on latural Computation. Washington DC : IEEE Computer Society, 2011:228 - 231.
  • 4TSIRIGOTIS L, VLAHOGIANNI E I, KARLAFTIS M G. Does infor- mation on weather affect the performance of short-term traffic forecas- ting models? [J]. International Journal of Intelligent Transporta- tion Systems Research ,2012,10( 1 ) : 1-10.
  • 5VLAHOGIANNI E I, KARLAFTIS M G. Comparing traffic flow time- series under fine and adverse weather conditions using recurrence- based complexity measures[ J]. Nonlinear Dynamics,2012,69 (4) : 1949-1963.
  • 6LEE Y S, TONG L I. Forecasting time series using a methodology based on autoregressive integrated moving average and genetic pro- gramming [ J ]. Knowledge-Based Systems, 2011,24 ( 1 ) : 66 - 72.
  • 7姚智胜,邵春福,熊志华,岳昊.基于主成分分析和支持向量机的道路网短时交通流量预测[J].吉林大学学报(工学版),2008,38(1):48-52. 被引量:47
  • 8MIN Wan-lin, WYNTER L. Real-time road traffic prediction with spatio-temporal correlations [ J ]'. Transportation Research Part C: Emerging Technologies,2011 ,t9(4) :606-616.
  • 9PAN T, SUMALEE A ,ZI-IONG R, et al. Short-term traffic state pre- diction based on temporal-spatial correlation[ J]. IEEE Trans on In- telligent Transportation Systems, 2013,14 ( 3 ) : 1242-1254.
  • 10ZHANG Yang, WANG Meng-ling. Peak traffic forecasting using non- parametric approaches[ J]. Journal of Shanghai diaotong Universi- ty: Science,2012,17( 1 ) :76-81.

二级参考文献43

共引文献127

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部