期刊文献+

基于粗糙集约简的图像插值方法 被引量:2

Image interpolation scheme based on rough sets reduction
下载PDF
导出
摘要 提出了一种基于粗糙集约简的支持向量机图像插值方法,目的在于提高基于学习的插值方法的插值效率,改善放大图像边缘模糊现象。首先在原始图像上利用已知的像素灰度值及邻域内像素间的相关性构造训练样本集;然后利用粗糙集约简算法约简掉其中重要度较小的特征,并用约简后的样本集训练支持向量机;再用测试样本及训练好的支持向量机估计偶行偶列的像素灰度值;最后利用测试样本及训练好的支持向量机估计剩余的未知像素灰度值。仿真表明,所提方法有效提高了插值效率,获得了较好的客观指标,得到了满意的插值图像。 In order to obtain visually pleasing image, this paper proposed an image interpolation method. It constructed training sample set based on the original image using the known pixel gray values and the correlation within the neighborhood pixels. Next, it used rough sets to reduce the training sample set, and trained the support vector machine with the reduced training sample set. Then, it estimated the pixel gray values in even row even column using the trained support vector machine. Finally, it estimated the pixel gray values in odd row even column and in even row odd column using the trained support vector machine. Simulation results show that the proposed method increases the efficiency of interpolation methods, improves the magnified image edge blurring, and obtains better objective indicators.
出处 《计算机应用研究》 CSCD 北大核心 2015年第2期623-626,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(51174258) 安徽高校省级自然科学研究项目(KJ2013B087) 淮南市科技计划资助项目(2013A4017 2011B31) 安徽理工大学青年教师科研资助项目(2012QNZ06) 国家创新创业项目(201310361205)
关键词 图像插值 粗糙集 约简 支持向量机 image interpolation rough sets reduction support vector machine
  • 相关文献

参考文献15

  • 1PLAZIAC N. Image interpolation using neural networks [ J ]. IEEE Trans on Image Processing, 1999,8( 11 ) :1647-1651.
  • 2LIANG Lu-ming, ZHAO Huml-xi, ZOU Bei-ji. Image intertlalion by blending kernels[ J 1. Signal Processing Letters, 2008,15:805-808.
  • 3HAN J W,KIM J H,CHEON S H ,et al. A novel image interpellation method using the bilateral filter [ J ]. IEEE Trans on Consumer Electronics,2010,56( 1 ) : 175-181.
  • 4DONG Wei-sheng,ZHANG l.ei, LUKAC R,et al. Spruce representation based inuige inteq',)lation with non-h:al autoregqessive mMeling [ J ]. IEEE Trans on Image Processing, 2013,22(4) :1382-1394.
  • 5贾晓芬,马立勇,马家辰.基于支持向量机的彩色滤波阵列插值方法[J].四川大学学报(工程科学版),2010,42(3):145-150. 被引量:3
  • 6JIA Xiao-fen,ZHAO Bai-ting,CHEN Zhao-quazl. (-netic algorithm opti- mization based support vector machine image interllation [ C ]//Pr. of Cross Strait Quad-Regional Radio Science and Wireless Technolo,' Con- ference. Washington DC : IEEE Computer Society, 2011 : 1319-1322.
  • 7JIA Xiao-fen,ZHAO Bai-ting. Demosaicing algorithm tbr color filter aTays based on SVMs [ J ]. International Journal of Gomlauter Science Issues,2013,10( I ) :212-217.
  • 8王珏,季梁.基于支持向量机的图象插值及错误隐匿策略[J].中国图象图形学报(A辑),2002,7(6):558-564. 被引量:4
  • 9郑胜,田金文,柳健.基于向量机的图像插值算法研究[J].中国图象图形学报(A辑),2005,10(3):338-343. 被引量:4
  • 10Ma Liyong Shen Yi Ma Jiachen.Local spatial properties based image interpolation scheme using SVMs[J].Journal of Systems Engineering and Electronics,2008,19(3):618-623. 被引量:2

二级参考文献24

  • 1Thbvenaz P, Blu T, Unser M. Interpolation revisited.IEEE Trans. on Medical Imaging, 2000, 19(7): 739-758.
  • 2Plaziac N. Image interpolation using neural networks. IEEE Trans. on Image Processing, 1999, 8(11): 1647-1651.
  • 3Cristianini N, Shawe-Taylor J. Introduction to support vector machines. Cambridge University Press, 2000.
  • 4Ma Liyong, Ma Jiachen, Shen Yi. Error estimate based support vector machines image interpolation algorithm. Journal of Harbin Institute of Technology, 2005, 37(S4): 88-88.
  • 5Ma Liyong, Ma Jiachen, Shen Yi. Support vector machines based image interpolation correction scheme. Lecture Notes in Artificial Intelligence, 2006, 4062: 679-684.
  • 6Zheng S, Tian J, Liu J. Research of SVM-based image interpolation algorithm optimization. Journal of Image and Graphics, 2005, 10A(3): 338-343.
  • 7Wang J, Ji L. Image Interpolation and error concealment scheme based on support vector machine. Journal of Image and Graphics, 2002, 7A(6): 558-564.
  • 8Chang C C, Lin C J. LIBSVM: a library for support vector machines. 2001. Software available at http://www.csie. ntu. edu. tw/-cjlin/libsvm.
  • 9Rajeev R, Wesley E, Griff L, et al. Demosaicking methods for Bayer color arrays [ J]. Journal of Electronic Imaging, 2002, 11 (3) :306 -315.
  • 10Lukac R, Plataniotis K N. Universal demosaieking for imaging pipelines with an RGB color filter array [ J ]. Pattern Recognition ,2005,38 ( 11 ) :2208 - 2212.

共引文献8

同被引文献18

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部