期刊文献+

三种分类预测模型在医学中的应用研究

A Study on Application of Three Prediction Models in Medicine
下载PDF
导出
摘要 基于一个肾衰竭患者数据,应用两种神经网络(BP神经网络和贝叶斯正则化BP神经网络)与常用的二分类Logistic回归对肾衰竭患者是否死亡进行预测,并比较三种模型的预测效果.三个模型的判对率都达到89%以上.其中,以贝叶斯正则化BP神经网络的判对率和ROC曲线下面积(AUC)最大,即预测效果最好;BP神经网络和Logistic回归预测效果差别不大. Based on a real dataset, we compare two kinds of neural network( BP Neural Network and Bayesian Regularized BP Neural Network) and Logistic Regression in medical statistics. By using SPSS 21. 0 and Matlab, after variable screening,train the three models and compare their prediction accuracy. Besides, draw their ROC curves and compare their areas under the curve( AUC) among the three models. All of the three models have reached the prediction accuracy over 89%. Bayesian Regularized BP Neural Network has the best results with the highest prediction accuracy and the largest AUC. Unlike the researches before,in our study,BP Neural Network did not have a better performance than Logistic Regression. The small sample size may result in the BP Neural Network without a good training. However,it may also highlight an advantage of Bayesian Regularized BP Neural Network,which still gets a good output under the situation of a small sample.
出处 《怀化学院学报》 2014年第11期29-32,共4页 Journal of Huaihua University
基金 广东省大学生创新创业训练计划项目"BP神经网络和贝叶斯神经网络的模拟比较研究及其应用"(1212113041) 国家自然科学基金面上项目"X伴性遗传病印记效应检测及其关联分析的统计方法研究"(81373098) 国家自然科学基金面上项目"印记基因检测及基于印记效应的疾病易感基因定位的统计方法研究"(81072386)
关键词 LOGISTIC回归 神经网络 ROC曲线 分类 Logistic regression neural network ROC curve classification
  • 相关文献

参考文献14

  • 1曹志峰.BP神经网络在临床诊断中的应用与探讨[J].实用医技杂志,2005,12(09B):2656-2657. 被引量:6
  • 2Rumelhart D E, Hinton G E, Williams R J. Learning representations by back - propagating errors [ J ] . Nature, 1986, 323 (9): 533-536.
  • 3MacKay D J C. A practical Bayesian framework for backpropagation networks [ J ]. Neural computation, 1992, 4 (3) : 448- 472.
  • 4Moody J, Hanson S J, Lippmann R P. The Effective Number of Parameters : An Analysis of Generalization and Regularization in Nonlinear Learning Systems [J]. Advances in neural information processing systems, 1992, 4: 847- 854.
  • 5魏东,张明廉,蒋志坚,孙明.基于贝叶斯方法的神经网络非线性模型辨识[J].计算机工程与应用,2005,41(11):5-8. 被引量:28
  • 6Auld T, Moore A W, Gull S F. Bayesian neural networks for internet traffic classification [J]. Neural Networks, IEEE Transactions on, 2007, 18 (1): 223-239.
  • 7Goh A T C, Kulhawy F H, Chua C G. Bayesian neural network analysis of undrained side resistance of drilled shafts [ J] . Journal of Geoteehnical and Geoenvironmental Engineering, 2005, 131 (1): 84-93.
  • 8Yu J, Chen X W. Bayesian neural network approaches to ovarian cancer identification from high - resolution mass spectrometry data [J]. Bioinformatics, 2005, 21 (1): i487 - i494.
  • 9Hecht - Nielsen R. Theory of the backpropagation neural network [J]. International Joint Conference on IEEE, 1989: 593 - 605.
  • 10MacKay D J C. Bayesian interpolation [J]. Neural computation, 1992, 4 (3): 415-447.

二级参考文献19

  • 1魏东,张明廉,蒋志坚,孙明.基于贝叶斯方法的神经网络非线性模型辨识[J].计算机工程与应用,2005,41(11):5-8. 被引量:28
  • 2周宝森,刘可立,何安光,蔡瑞华,张军.吸烟对肺癌的危险度及人群归因危险度的研究[J].中国医科大学学报,1996,25(1):28-31. 被引量:10
  • 3张立明.人工神经网络的模型及应用[M].上海:复旦大学出版社,1992..
  • 4周宝森 何安光.肺癌预后因素分析[J].中华流行病学杂志,1995,16(1):124-124.
  • 5David J C, Mackay. Bayesian neural networks and density networks[J]. Nuclear Instruments and Methods in Physics Research A, 1994, 354: 73-80.
  • 6Mackay, David J C. Bayesian interpolation[J]. Neural Computation, 1992, 4(3): 415-447.
  • 7周利峰,中国卫生统计,1998年,15卷,1期,1页
  • 8周宝森,中华流行病学杂志,1995年,16卷,1-A期,124页
  • 9高惠璇,统计计算,1995年
  • 10张立明,人工神经网络的模型及其应用,1992年

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部