期刊文献+

基于LIBS技术铝合金中铁元素的定量分析(英文) 被引量:10

Quantitative analysis of the element iron in aluminum alloy using LIBS
下载PDF
导出
摘要 为了精确得到铝合金标样等离子体的电子温度和电子密度,实验采用激光诱导击穿光谱技术,利用532 nm调Q Nd:YAG激光器诱导产生铝合金E311等离子体。测量铁原子谱线(381.59 nm)的Stark展宽(0.12 nm)得到等离子体的电子密度是4.3×1016cm-3;基于铁原子谱线(370.56,386.55,387.25,426.05,427.18,430.79,432.57,440.48 nm),利用迭代Boltzmann算法,得到回归系数为0.999时等离子体的电子温度是8 699 K。基于铝合金标样(E311、E312、E313、E314、E315、E316)和铁原子谱线404.58 nm,建立了铁元素的标准曲线,计算得到铁元素的探测限是0.0779 wt%。等离子体特征参数表明铝合金等离子体满足光学薄和局部热力学平衡状态。 In order to precisely analyze electron temperature and electron density of aluminum alloy, the Laser Induced Breakdown Spectroscopy was adopted. The second harmonic of a pulsed Nd:YAG laser (532 nm) has been used for the ablation of aluminum alloy E311 in air at atmospheric pressure and the laser- induced plasma characteristics were examined in detail. The electron density of 4.3 ×10^16 cm^-3 was inferred from the Stark broadening (0.12 nm) of the profile of Fe (I) 381.59 nm. In order to minimize relative errors in calculation of the electron temperature, an improved iterative Boltzmann plot method with eight iron lines (370.56, 386.55, 387.25, 426.05, 427.18, 430.79, 432.57, 440.48 nm) is used. Experimental results show that the electron temperature is 8 699 K with the regression coefficient of 0.999. The calibration curve for iron based on Fe (I) 404.58 nm was established using a set of six samples of standard aluminum alloy (E311, E312, E313, E314, E315, E316) and the detection limit was 0.077 9 wt%. The plasma was verified to be optically thin and in local thermodynamic equilibrium based on the experimental results.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第1期96-101,共6页 Infrared and Laser Engineering
基金 陕西省教育厅科研计划项目(2013JK0607) 西安市科技计划项目(CXY1443WL01,CX1289WL05,CXY1352WL02) 国家自然科学基金(61401356)
关键词 原子发射光谱 激光诱导击穿光谱技术 等离子体 atomic emission spectrum laser-induced breakdown spectroscopy plasmas
  • 相关文献

参考文献3

二级参考文献39

  • 1许秀贞,李自田,薛利军.CCD噪声分析及处理技术[J].红外与激光工程,2004,33(4):343-346. 被引量:104
  • 2李胜勇,胡生亮,刘晓然,沈中华,倪晓武,金嘉旺.激光空泡溃灭辐射声波声谱特性研究[J].激光技术,2007,31(3):281-284. 被引量:10
  • 3Cremers D A and Radziemski L J. 2006, Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons, Ltd, New York.
  • 4Singh J P and Thakur S N. 2007, Laser-Induced Breakdown Spectroscopy. Elsevier B. V., Amsterdam.
  • 5Yu L Y, Lu J D, Chen W, et al. 2005, Plasma Science and Technology, 7:3041.
  • 6Winefordner J D, Gornushkin J B, Correll T, et al. 2004, J. Anal. Atom. Spectrom., 19:106.
  • 7Noll R, Bette H, Brysch A, et al. 2001, Spectrochim. Acta Part B, 56:637.
  • 8Rai N K and Rai A K. 2008, J. Hazard. Mater., 150: 835.
  • 9Kaminska A, Sawczak M, Komar K. 2007, Appl. Surf. Sci., 253:7860.
  • 10Shaikh N M, Hafeez S, Rashid B, Baig M A. 2007, Eur. Phys. J. D, 44:371.

共引文献6

同被引文献82

  • 1方全国.煤质在线分析技术原理及应用[J].煤质技术,2006,21(6):23-25. 被引量:16
  • 2Miliolek A, Palleschi V, Schechter I. Laser-induced Breakdown Spectroscopy: Fundamentals and Applications [M]. New York: Cambridge University Press, 2006.
  • 3Cremers D A, RadziemskiI L J. Handbook of Laser-induced Breakdown Spectroscopy[M]. Hoboken, NJ: John Wiley & Sons Ltd, 2006.
  • 4Davies C M, Telle H H, Montogomery D J, et al. Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS) [J]. Spectrochim Acta Part B, 1995, 50: 1059- 1075.
  • 5Cremers D A, Barefield J E, Koskelo A C. Remote elemental analysis by laser-induced breakdown spectroscopy using a fiberoptic cable [J]. Appl Speetrosc, 1995, 49: 857-860.
  • 6Elsayed K, Iman H, Harfoosh A, et al. Design and construction of Q-switched Nd:YAG laser system for LIBS measurements [J]. Optics and Laser Technology, 2012, 44 (1): 130-135.
  • 7Haider A F, Khah Z H. Determination of Ca content of coral skeleton by analyte additive method using the LIBS technique [J]. Optics & Laser Technology, 2012, 44(6): 1654-1659.
  • 8Pavlov S G, Schroder S, Rauschenbach I, et al. Low-energy laser induced breakdown spectroscopy forin -situspace missions to solar system bodies without atmospheres [J]. Planetary and Space Science, 2012, 71:57-63.
  • 9Banerjee S P, Fedosejevs R. Single shot depth sensitivity using femtosecond Laser Induced Breakdown Spectroscopy [J]. Spectrochimica Acta Part B, 2014, 92: 34-41.
  • 10Jiang X, Hayden P, Laasch R, et al. Inter-pulse delay optimization in dual-pulse laser induced breakdown vacuum ultraviolet spectroscopy of a steel sample in ambient gases at low pressure [J]. Spectrochim Acta Part B, 2013, 86:66-74.

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部