期刊文献+

结合NAPCA和复小波变换的高光谱遥感图像去噪 被引量:18

Denoising of hyperspectral remote sensing imagery using NAPCA and complex wavelet transform
下载PDF
导出
摘要 提出了一种能够良好地保持高光谱遥感图像细节特征的噪声去除方法。该方法首先利用噪声调整的主成分分析(NAPCA)进行特征提取,再利用复小波变换(CWT)对NAPCA变换后的低能量成分进行去噪处理。对此低能量成分的每个波段利用二维复小波去噪,此时复小波系数采用BivaShrink函数进行收缩。然后对低能量成分的每条光谱进行一维复小波变换,利用邻域阈值函数进行小波系数的收缩。对AVIRIS 图像贾斯珀桥、月亮湖和盆地进行的仿真实验表明:该方法去噪后的信噪比与HSSNR相比提高了4.3-7.8 dB,与PCABS相比提高了0.8-0.9 dB,验证了该算法的可行性。真实数据OMIS图像的实验结果验证了该方法的有效性和适用性。 A new denoising algorithm was proposed to keep the fine features of hyperspectral remote sensing imagery effectively. Firstly, the noise-adjust principal components analysis (NAPCA) was performed on the hyperspectral datacube. Then output channels of the low-energy NAPCA were transformed into the wavelet domain by 2- D complex wavelet transform(CWT). The BivaShrink function was used to shrink the wavelet coefficients. And then 1- D CWT denoising method was used to remove the noise of the each spectrum of the low-energy NAPCA datacube. The AVIRIS images Jasper Ridge, Lunar Lake and Low Altitude were used for the simulated experiment. Compared with the HSSNR and the PCABS, the signal-to-noise ratio (SNR) is improved by 4.3- 7.8 dB and 0.8- 0.9 dB via the proposed method in this paper, which shows that the proposed method is feasible. It is shown that the proposed method is correctable and available according to the experimental results of the real datacube OMIS.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第1期327-334,共8页 Infrared and Laser Engineering
基金 国家自然科学基金(61101183 41201363)
关键词 高光谱遥感图像 去噪 噪声调整的主成分分析 复小波变换 BivaShrink函数 hyperspectral imagery denoising NAPCA complex wavelet transform BivaShrink function
  • 相关文献

参考文献14

二级参考文献49

  • 1刘静,钟伟才,刘芳,焦李成.基于组织协同进化分类算法的遥感图像目标识别[J].信号处理,2004,20(3):277-280. 被引量:2
  • 2肖志坚,周焰,隋东坡,韩世明.基于结构特征的遥感图像机场目标识别[J].红外与激光工程,2005,34(3):314-318. 被引量:11
  • 3吴传庆,童庆禧,郑兰芬.基于小波变换的高光谱图像消噪[J].遥感信息,2005,27(4):10-12. 被引量:7
  • 4王强,束炯,尹球.高光谱图像光谱域噪声检测与去除的DSGF方法[J].红外与毫米波学报,2006,25(1):29-32. 被引量:23
  • 5Vaiphasa C. Consideration of smoothing techniques of hyperspectral remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 91-99.
  • 6Torrecilla E, Aymerich I F, and Pons S, et al.. Effect of spectral resolution in hyperpspectral data analysis[J]. Geoscience and Remote Sensing Symposium, 2007, 23(28): 910-913.
  • 7Backer S D, Piurica A, and Huysmans B, et al.. Denoising of multicomponent images using wavelet least-squares estimators[J]. Image and Vision Computing, 2008, 26(7): 1038-1051.
  • 8Rakwatin P, Takeuchi W, and Yasuoka Y. Stripe noise reduction in MODIS data by combining histogram matching with facet filter. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1844-1856.
  • 9Stephan K, Hibbitts C A, and Hoffmann H, et al.. Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data[J]. Planetary and Space Science, 2008, 56(3): 406-419.
  • 10McCabe G P. Principal variables[J]. Technometrics, 1984, 26(2): 137-144.

共引文献69

同被引文献222

引证文献18

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部