期刊文献+

不同MgO掺杂比对Mg_xZn_(1-x)O靶材性能的影响 被引量:1

Effect of Mg O doping ratio on the properties of Mg_xZn_(1-x)O targets
下载PDF
导出
摘要 用传统常压固相烧结法,制备掺杂氧化镁的氧化锌陶瓷靶材,研究不同Mg O含量及烧结温度对MgxZn1-xO陶瓷靶材的微观结构、力学性能、致密度和导电性能的影响.通过X射线衍射仪(X-ray diffraction,XRD)测定靶材相结构,扫描式电子显微镜(scanning electron microscope,SEM)观察靶材的断面形貌,万能实验机测量靶材的抗弯强度,维氏显微硬度仪测量靶材的维氏硬度,阿基米德排水法测量靶材密度,四探针法测量靶材导电性能,对MgxZn1-xO靶材的性能进行了表征,分析了MgxZn1-xO陶瓷靶材的烧结机理.结果表明,MgxZn1-xO靶材的最佳烧结温度随着Mg O含量的增加有所提高.Mg O的掺杂比为x=0.12时,靶材的最佳烧结温度是1 450℃;掺杂比为x=0.20时,靶材的最佳烧结温度约为1 500℃.相同烧结温度下,随着Mg O掺杂比的增加,靶材的致密性增大;靶材抗弯强度先升后降,掺杂比为x=0.12时达到最大值,为94.56 MPa.靶材硬度随着Mg含量的增加渐增,在1 450℃烧结,掺杂比为0时维氏硬度为152.000 N/mm2,掺杂比为x=0.40时维氏硬度为364.045 N/mm2.靶材的导电性随着Mg O掺杂比的增加呈渐减趋势,掺杂比为0时,方块电阻为819.36Ω;掺杂比为x=0.40时,方块电阻增至30.00 MΩ. MgxZn1-xO ceramic targets were prepared by using traditional solid-phase sintering method, and the effects of different MgO doping ratios and sintering temperatures on their microstructure, mechanical properties, density and electrical properties were studied. The MgxZn1-xO targets performance were characterized through specific analyses, including phase structure analysis by X-ray diffraction ( XRD) , fracture surface observation by scanning electron mi-croscope (SEM), bending strength measurement by universal-testing machine, Vickers hardness measurement by micro Vickers tester, density measurement by Archimedes principle, and conductivity measurement by the four-probe method. Also, a preliminary understanding of the sintering mechanism of MgxZn1-xO targets was better understood on the basis of the characterization. The results show that the best sintering temperature increases with the increase of the MgO content x in MgxZn1-xO. The optimal sintering temperature is 1 450 ℃, at the doping ratio x = 0. 12, and the optimal sintering temperature is 1 500 ℃, at the doping ratio x = 0. 20. At the same sintering temperature, the density increases with the increase of MgO content, while the bending strength first increases and then decreases with the maximum bending strength being 94. 56 MPa at the doping ratio x = 0. 12 . The hardness always increases with the increase of MgO content:Vickers hardness reaches 152. 000 N/mm^2 without doping, and the hardness increases to 364. 045 N/mm^2 at the doping ratio x =0. 40. The sheet conductivity gradually decreases with the increase of MgO doping ratio. The sheet resistance is 819. 36 Ω when doping ratio is 0 and it increases to 30. 00 MΩ when doping ratio x = 0. 40 .
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2015年第1期82-88,共7页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(51371120 51302174) 深圳市战略性新兴产业发展专项资金资助项目(ZDSY20120612094418467) 深圳市科技研发资金基础研究计划资助项目(JCYJ20140418181958489)~~
关键词 材料加工 粉末冶金 氧化锌 氧锌镁 陶瓷靶材 烧结 掺杂比 力学性能 materials processing powder metallurgy ZnO MgxZn1-x O ceramic target sintering doping ratio mechanical property
  • 相关文献

参考文献24

  • 1Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Applied Physics Letters, 2003, 82(5):733-735.
  • 2Gu Fubo,You Dan,Wang Zhihua, et al. Improvement of gas-sensing property by defect engineering in microwave-assisted synthesized 3D ZnO nanostructures[J]. Sensors and Actuators B: Chemical,2014,204:342-350.
  • 3Masuda S, Kitamura K, Okumura Y, et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties[J].Journal of Applied Physics, 2003,93(3):1624-1630.
  • 4Al-Salman,Husam S,Abdullah M J, et al.Preparation of ZnO nanostructures by RF-magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing application[J]. Measurement,2014,59:248-257.
  • 5Tsukazaki A, Ohtomo A, Kita T,et al.Quantum hall effect in polar oxide heterostructures[J]. Science, 2007, 315(5817):1388-1391.
  • 6Poongodi G,Mohan K R,Jayavel R,et al.Influence of S doping on structural, optical and visible light photocatalytic activity of ZnO thin films[J].Ceramics International, 2014,40(9B):14733-14740.
  • 7Oba F, Nishitani S R, Isotani S, et al. Energetics of native defects in ZnO[J]. Journal of Applied Physics, 2001, 90(2):824-828.
  • 8Umezawa N, Sato M, Shiraishi K. Reduction in charged defects associated with oxygen vacancies in hafnia by magnesium incorporation:first-principles study[J]. Applied Physics Letters,2008,93(22):223104-1-223104-3.
  • 9Zamiri R,Singh B,Bdikin I,et al.Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method[J].Solid State Communications,2014,195:74-79.
  • 10Tsukazaki A,Akasaka S,Nakahara K,et al.Observation of the fractional quantum Hall effect in an oxide[J]. Nature Materials,2010,9(11):889-893.

二级参考文献10

  • 1裴志亮,张小波,王铁钢,宫骏,孙超,闻立时.ZnO:Al(ZAO)薄膜的制备与特性研究[J].金属学报,2005,41(1):84-88. 被引量:20
  • 2[1]Jaehyeong Lee,Dongjin Lee,Donggun Lim,et al.Straetural,electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell appllcations[J].Thin Solld Films,2007,515(15):6094-6098.
  • 3[4]Gheah S,Sarkar A,Chaudhuri S,et al.Grain Boundary Scattering in Aluminum-Doped ZnO Films[J].Thin Sofid Films,1991,205:64-68.
  • 4[5]Kim K H,Park K C,Ma D Y.Structural,Electrical and Optical PropoSes of Aluminum Doped Zinc Oxide Films Prepared by Radio Frequency Magnetron Sputtering[J].Appl Phys,1997,81(12):7764-7772.
  • 5[6]Minami T,Sato H,Takata S,et al.Large-Area Milky Transparent Conducting Al-doped Films Prepared by Magnetron Sputtering[J].Jpn Appl Phys,1992,31:L1106-L1109.
  • 6[10]Yoon M H,Lee S H.Solid Solubility Limits of Ga and A1 in ZnO[J].Materials Science Letters,2002,21:1703-1704.
  • 7[11]Park K C,Ma D Y,Kim K H.The Physical Properties of Al-Doped Zinc Oxide Films Prepared by rf Magnetron Sputtering[J].Thin Solid Films,1997,305:201-209.
  • 8[12]Sernelius B E,Berggren K F,Jin Z C,et al.Band-gap Tailoring of ZnO by Means of Heavy Al Doping[J].Phy Review B,1988,37(17):10244-10247.
  • 9[14]Szyszka B,Sittingex V,Jiang X.Transparent and Conductive ZnO:Al Films Deposited by Large Area Reactive Magnetton Spuuering[J].Thin Solid Films,2003,442(1):179-183.
  • 10刘心宇,李海麒,江民红.常压固相烧结法制备ZAO靶材及其性能的研究[J].湖南科技大学学报(自然科学版),2008,23(1):27-30. 被引量:16

共引文献15

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部